Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициенты массопередачи и высота колонны

    Оценка общей эффективности работы экстрактора. Такая оценка проводится, например, при выборе размеров колонны и условий ведения процесса, для чего используется параметр, представляющий собой модифицированный коэффициент массопередачи, — высота единицы переноса (ВЕП) ВЕП является мерой эффективности переноса растворенного вещества и производительности на единицу объема колонны. Для ступенчатых экстракторов в качестве такого параметра можно использовать отношение суммы объемных скоростей фазовых потоков при захлебывании к общему объему одной ступени. Этот параметр можно использовать для различных экстракторов при их сравнении. С увеличением значения этого параметра для идентичных питающих потоков конструкция экстрактора будет более эффективной. [c.18]


    Эффективность пульсационных колонн оценивается значением коэффициента массопередачи, высотой единицы переноса (ВЕП) или высотой, эквивалентной теоретической тарелке (ВЭТТ). [c.150]

    Гидравлическое сопротивление решетчатых тарелок является важной характеристикой, определяющей их работу с помощью гидравлического сопротивления рассчитывают коэффициенты массопередачи [ ], высоту вспененного слоя жидкости на тарелке [ ] и энергетические затраты на преодоление потерь напора газового (парового) потока при движении его в колонне. [c.44]

    Если время образования капли велико, то в методе отбора проб на весьма малых высотах колонны массопередачей при движении и коагуляции можно пренебречь по сравнению с массопередачей в период образования капли и рассчитывать коэффициент непосредственно по [c.213]

    Если целевым назначением аппарата является извлечение или насыщение по сплошной фазе, то высота колонны, необходимая для достижения заданной степени насыщения, уменьшается с уменьшением С. В отличие от извлечения из дисперсной фазы, в данном случае 2 0 при С— О, что формально следует из формулы (5.37). Физически это связано с тем, что при заданном расходе сплошной фазы уменьшению С соответствует увеличение Кд при этом возрастает не только средняя движущая сила процесса, но и поверхность контакта фаз и, следовательно, объемный коэффициент массопередачи. [c.224]

    Наиболее полные экспериментальные исследования процесса массообмена в полых распылительных скрубберах было проведено Фиалковым с соавторами [363, 367-371]. Целью исследований был подбор типа форсунок и их расположение в колонне, величина плотности орошения и скорости воздуха при условии ограниченного гидравлического сопротивления аппарата, а также получение эмпирической формулы для расчета скруббера. Проводилась очистка воздуха от HF, СЬ, SOj водой, содовым и щелочными растворами и растворами кислот. При обработке экспериментальных данных определялся объемный коэффициент массопередачи -К а эквивалентного колонного аппарата, работающего в режиме идеального вытеснения при постоянстве по высоте колонны. При этом предполагалось, что равновесная концентрация с на границе раздела газ—жидкость равна нулю. Это допущение применимо лишь для очень хорошо растворимых газов. В соответствии с уравнением (5.4) экспериментальное значение объемного коэффициента массопередачи рассчитьшалось по формуле [c.250]


    РАСЧЕТ КОЭФФИЦИЕНТОВ МАССОПЕРЕДАЧИ И ВЫСОТЫ КОЛОННЫ [c.132]

    Н — высота рабочей зоны колонны кг/м 9 К — коэффициент массопередачи  [c.136]

    Пусть экстракция проводится в противоточной вертикальной колонне, причем растворитель и р финат взаимно нерастворимы. Будем считать, что коэффициент массопередачи постоянен по всей высоте экстракционной колонны. [c.90]

    Объемные коэффициенты массопередачи Ка и значения высоты единицы переноса Лд в колоннах этого типа обобщены для некоторых систем по упрощенным уравнениям (4-25), (4-26), (4-29) и (4-30). Характер этих зависимостей подобен для всех скоррелированных систем, поэтому ограничимся рассмотрением диаграмм на рис. 4-3 и 4-4, на которых показана зависимость объемных коэффициентов [c.312]

    Система уравнений (11,16)— (И,33) устанавливает соотношение концентрации легколетучего компонента в фазах по высоте колонны Х], У] с режимными параметрами Р, г, д, О, О с учетом коэффициентов массопередачи на тарелках и является математическим описанием статической характеристики анализируемого объекта. [c.79]

    Основные допущения принимается одна из следующих идеализированных моделей гидродинамики — идеального вытеснения или ячеечная коэффициент массопередачи постоянен по высоте колонны. [c.88]

    Пример 23. Определить к. п. д. перекрестноточной тарелки с кольцевыми клапанами (размеры клапана даны на рис. 32) для колонны диаметром 260 мм, а также коэффициент массопередачи в процессе десорбции диоксида углерода из его водного раствора при продувке воздухом. Концентрация СОг в растворе на входе в тарелку 0,65 г/л, на выходе с тарелки 0,12 г/л, температура на тарелке 20 С. Плотность орошения колонны 0 = 15,1 м /(м -ч). Нагрузка колонны по газовой фазе обеспечивает подъем клапанов (зазор между клапаном и плоскостью тарелки) на тарелках на высоту а,- = = 6,5 мм. Масса клапана С кл = = 0,03 кг относительное свободное сечение тарелок 5о=0,12 м /м. Высота газожидкостного слоя на тарелке Яп = 130 мм. [c.188]

    Расчет процесса массопередачи при ректификации усложняется тем, что коэффициент массопередачи обычно значительно изменяется по высоте колонны, увеличиваясь по направлению к верху колонны. В соответствии с характером линии равновесия процесса ректификации (см. рис. 19-2, стр. 661) тангенс к угла наклона к ней касательной уменьшается с возрастанием содержания НК в смеси, а уменьшение величины к согласно уравнению (16-38) приведет к повышению коэффициента массопередачи К. [c.693]

    Решение. Для решения задачи необходимо сначала определить коэффициент массоотдачи в газовой фазе. Так как сопротивление со стороны жидкой фазы при испарении жидкости отсутствует, то найденный коэффициент и будет представлять собой коэффициент массопередачи. Скорость увлажнения воздуха определим умножением вычисленного коэффициента массопередачи на разность концентраций водяного пара у поверхности жидкости и в ядре потока газа (при входе в колонну) и на поверхность контакта фаз, соответствующую 1 м высоты колонны. [c.288]

    Высота аппаратов со ступенчатым контактом. Высоту аппаратов этого типа, в частности тарельчатых колонн, иногда выражают через объемный коэффициент массопередачи, согласно уравнению (Х,77) или (Х,77а). В барботажных аппаратах величина Ку должна рассчитываться на единицу объема слоя пены или эмульсии, в котором происходит в основном массообмен. Однако ввиду трудности определения объема подвижной пены коэффициенты массопередачи относят к единице рабочей площади тарелки. Эти коэффициенты массопередачи, обозначаемые через Кз, связаны с коэффициентами массопередачи Ку и Ку (например, прн расчете по фазе Ф ) соотношением [c.424]

    Для колец внавал при достаточно хорошем распределении орошения (число точек орошения более 50 на 1 м сечения колонны) коэффициент массопередачи мало зависит от высоты насадки. При меньшем числе точек орошения коэффициенты массопередачи заметно возрастают с увеличением высоты насадки, что свидетельствует о растекании жидкости и улучшении ее распределения с ростом высоты. [c.429]

    Влияние п на активную поверхность можно определить из опытов по массопередаче. Жаворонков, Рамм, Гильденблат и др. [105, 1551 исследовали абсорбцию NHg в колонне диаметром 500 мм с насадками из колец размером 25—100 мм и с оросительными устройствами, дающими различное число точек орошения. Высоту насадки доводили до 6 л<. Опыты показали, что увеличение п вначале приводит к значительному повышению коэффициента массопередачи, а затем повышение замедляется и, наконец, практически прекращается. Исходя из этого, было принято, что коэффициенты массопередачи, полученные при максимальном в данных опытах значении п=560, соответствуют бесконечно большому числу точек орошения. [c.450]

    При расчетах, принимается, что коэффициент массопередачи не меняется по высоте колонны, линейные скорости потоков гУд и и коэффициенты продольного перемешивания не изменяются пО высоте и сечению аппарата. [c.267]


    Иное объяснение больших значений концевого эффекта, определяемого методом экстраполяции на нулевую высоту колонны, при малых временах каплеобразования предложено в работах [326, 327]. Считается, что при малых временах каплеобразования количество экстрагированного каплей вещества невелико и, следовательно, истинный концевой эффект иезначителен. Большие значения концевого эффекта, полученные методом экстраполяции на нулевую высоту колонны, могут иметь место только при лимитирующем сопротивлении дисперсной фазы. В этом случае вследствие нестационарности процесса переноса коэффициент массопередачи значительно возрастает при малых временах контакта фаз (см. раздел 4.3), а степень извлечения уменьшается более круто, чем на основном участке, приближаясь к истинному малому значению концевого эффекта в месте отрьша капли. Поэтому линейная экстраполяция на нулевую высоту колонны приводит к кажущемуся значению концевого эффекта, существенно превышающему истинное значение. [c.210]

    На рис. 4.16 и 4.17 представлены зависимости степени извлечения (насыщения) от высоты колонны, построенные по экспериментальным данным [327], полученным при малых временах образования капли. Для систем с лимитирующим сопротивлением в сплопшой фазе коэффициент массопередачи не зависит от времени и линейная экстраполяция допустима (рис. 4.16). Однако при лимитирующем сопротивлении дисперсной фазы, как следует из рис. 4.17, кажущийся концевой эффект, найденный экстраполяцией отточкиЯ=12 см, зависит от диаметра капель и равен 52 35 и 25 % для капель диаметром 0,14 0,19 и 0,28 см, соответственно. Характерным является отклонение экспериментальных точек на малых высотах колонны от экстраполяционной кривой в сторону меньших значений степени насьпцения. Из этого следует, что истинные значения концевого эффекта существенно меньше полученных методом линейной экстраполяции. [c.211]

    Из многочисленных экспериментальных данных известно, что в распылительных, насадочных и тарельчатых колоннах объемный коэффициент массопередачи линейно возрастает с увеличением скорости подачи дисперсной фазы Кд в широком диапазоне изменения последней. Линейная зависимость лго от Кд может наблюдаться, например, в том сл)Д1ае, когда размеры капель и скорость их подъема не зависят от Кд, что подтверждается при небольших значениях удерживающей способности (УС) прямыми экспериментами по фотографированию капель. В этом случае коэффициент массопередачи к не зависит от Кд, а величина удельной межфазной поверхности раздела а, пропорциональная числу капель в единице объема, линейно возрастает с увеличением Гд. Однако линейная зависимость ко от Гд может иметь место не только в этом частном случае, но и тогда, когда возрастание а компенсируется уменьшением к. В связи с этим в работах [349-351 ] нами было предложено использовать для расчета скорости массопередачи и высоты колонны приведенные коэффициенты массопередачи [c.220]

    В предьщущих разделах рассматривался массотеплообмен для постоянных по высоте колонны значениях коэффиплента распределения, коэффициента массопередачи, удельной поверхности контакта фаз и скоростей подачи сплошной и дисперсной фаз. Эти методы применимы как для моно дисперсных потоков, так и для пленочных течений. [c.242]

    Исследованию и расчету колонных химических реакторов и процессам абсорбции и десорбции в колонных аппаратах посвящена об-щирная литература. Больщинсгво работ относится к экспериментальному изучению конкретных систем и получению эмпирических формул дпя расчета аппаратов. В ряде работ применяются пленочная и пенетрационная модели массопередачи с химическими реакциями, изложенные в гл. 6. Поскольку, однако, эти модели разработаны для случая постоянства концентрации хемосорбента и абсорбтива (экстрактива) в сплошной и дисперсной фазах, их применение дпя расчета прямо- и противоточных аппаратов затруднено. Обычно при расчете колонных аппаратов полагают, что коэффициент ускорения массообмена вследствие протекання химических реакций постоянен по высоте колонны. Это допущение может привести в ряде случаев к существенным ошибкам. [c.286]

    У111-8. Изучался процесс сушки воздуха в псевдоожиженном слое силикагеля, находящегося в колонне с поперечным сечением 0,372 ж. Средний размер частиц 3,68 мм, что соответствует наружной поверхности 918 м м . Коэффициент массопередачи зависит от высоты слоя, но в интервале 0,15— 0,3 м его значение равно  [c.302]

    Для расчета высоты массообмеиных колонн необходимо знать коэффициенты массопередачи или общие высоты единиц переноса, или общие числа единнц переноса. Эти параметры рассчитывают по уравне- [c.51]

    Изучение скорости массо- и теплообмена в насадочных колоннах являлось объектом многочисленных исследований [82—86]. Однако сопоставлепие критериальных уравнений, полученных различными авторами, не давало [87—89] оснований для оптимизма. Тем пе менее накопленпе эксперпментального материала позволило установить ряд закономерностей, характеризующих процессы переноса в насадочных колоннах. Прежде всего, интерес вызывали данные о квазпстацпопарном характере массопередачи в насадочной колонне [89—93]. Увеличение высоты слоя насадки практически пе оказывало влияния на величину коэффициента массопередачи. Наряду с этим известно, что увеличение времени пребывания дисперсной фазы в колонне при заполнении ее насадкой также не приводит к снижению коэффициента массопередачи [94] при лимитирующем сопротивлении дисперсной фазы. Массопередача в дисперсной фазе может иметь квазистационарный характер при условии, что суммарный процесс массопередачи аддитивно складывается из ряда самостоятельных процессов подобно процессу в тарельчатой колонне. [c.266]

    Коэффициенты массообмена в экстракционных колоннах зависят от фнзнко-химических свойств жидкостей, турбулентности в обеих фазах и геометрических элементов колонны. Несмотря на трудности определения поверхности контакта фаз, количественно массообмен определяется для всех типов колонн при помощи объемных коэффициентов массопередачи или высоты единицы массопереноса. Обе аелнчины (коэффициент и высоту единицы переноса) относят к фазе рафината, или к фазе экстракта, или же к диспергированной фазе, или к сплошной. Опытные данные выражаются с помощью критериев подобия, используемых при описании диффузионных процессов критерия Шервуда 5п, критерия Рейнольдса Ре для обеих фаз и критерия Шмидта 5с. В состав этих критериев входят вязкость и плотность жидкости но они не учитывают межфазного натяжения, которое в жидких системах оказывает влияние на массообмен через межфазную турбулентность. Расчетным уравнениям придается зид показательных функций. Введение в уравнения критерия Рей- юльдса для обеих фаз одновременно следует из предполагаемого влияния турбулентности одной фазы на другую. Во многих случаях зто влияние не подтверждается, и тогда уравнение содержит только один критерий Рейнольдса или скорость одной фазы. [c.304]

    Диаметр колонны оказывает влияние на массообмен (объемный коэффициент массопередачи), главным образом, в связи с влиянием стенки и каналообразованием, вызванным неравномерностью расположения элементов насадки. При увеличении диаметра колонны влияние стенки исчезает и элементы насадки располагаюгся более равномерно. Поэтому результаты работы больших колонн в некоторых случаях могут быть лучше, чем малых, а в некоторых—хуже. Результаты исследований, впрочем немногочисленных, подтверждают эти выводы. При экстракции пищевых жиров фурфуролом в колоннах диаметром 50, 560 и 1600 мм [59] на двух болььчих колоннах был получен одинаковый к. п. д., в то время как у колонны диаметром 50 мм объемный коэффициент массообмена оказался гораздо хуже. В качестве насадки использовались кольца Рашига одинаковых размеров. Влияние диаметра колонны установлено также для системы вода—диэтиламин—толуол в колоннах диаметром 76, 101 и 152 мм. Результаты этих исследований [81] при насадке из колец Рашига диаметром 12,7 мм и выше приведены на рис. 4-12, где показана зависимость высоты единицы массопереноса для воды (ось ординат) при постоянных размерах насадки от отношения расхода потоков [c.329]

    При записи уравнений математического описания процесса абсорбции использованы следующие условные обозначения информационных переменных а —удельная поверхность насадки — диаметр насадки О —расход газа Л — удерживающая способность насадки Н — высота ячейки полного перемеши-. вания К — общий коэффициент массопередачи Kv — объемный коэффициент массопередачи L — расход жидкости т. — коэффициент фазового равновесия N — общее число ячеек полного перемещивания Шг — скорость газа, рассчитанная на полное сечение колонны а)инв — скорость газа в точке ицверсии х — концентрация компонента в жидкой фазе у — концёнтрация компонента в газовой фазе 2 —общая высота насадочного слоя 2 —текущее значение высоты наса-дочного слоя. Индексы вх — вход вых —выход г —газ ж —жидкость инв — инверсия 1, 2,. .., п — номер ячейки полного перемешивания О — начальное значение р — равновесная величина ст — статическая величина. [c.89]

    Очевидно, чем больше поверхностная энергия, тем более высокую стабильность пленки жидкости следует ожидать при смачивании твердого тела, но тем труднее, однако, добиться полного смачивания жидкой фазой элемента насадки [11 ]. Предварительным затоплением насадки (см. разд. 4.10.8) и выбором оптимальной конфигурации рабочей поверхности насадки можно значительно улучшить ее смачиваемость [9]. Титов и Зельвен ский [10] предложили три метода расчета активной поверх ности ае в колоннах с насыпной насадкой. Получены графиче ские зависимости доли активной поверхности, высоты единиць переноса и коэффициентов массопередачи от плотности орошения [c.48]

    Расчет насадочных ректификационных колонн. Для насадочных колонн при скоростях паров ниже скоростей, соответствующих подвисанию жидкости, высоту единицы нерено.са определяют по формулам, приведенным на стр. 612. Наибольшее значение коэффициента массопередачи достигается при оптимальной скорости паров, которая соответствует началу подвисания и может быть определена по уравнению (17-16). Оптимальная скорость изменяется по высоте колонны в соответствии с изменением массовых скоростей пара и жидкости и их плотности. [c.693]

    Зная значения коэффициента массопередачи, можно с помошъю измерения отрезков АВ между рабочей и равновесной линиями и уравнения (Х.29) находить положение точки С в рабочем дна- пазоне изменения концентраций по высоте колонны. Геометрическое место точек представляет собой так называемую кинетическую линию. Построение ступенчатой ломаной линии между рабочей и кинетической линиями, аналогичное проведенному на рис. Х-2, позволяет определить действительное число тарелок в колонне. [c.331]

    Пример X. 3. Определить высоту насадки в колонне для десорбции аммиака из водного раствора воздухом. Колонна работает в следующих условиях расход раствора аммиака 2= 1069,90 кмоль/ч концентрация аммиака в растворе на входе Сг = 0,0698 кг/кг на выходе С1 = 0,0186 кг/кг расход воздуха 0 = 530 кмоль/ч концентрация аммиака в выходящем из колонны воздухе уг = 0,1 средняя температура = 40° С диаметр колонны = 2200 мм тип насадки кольца Ращига 50 X 50 X 5 жл , загруженные внавал. Коэффициент массопередачи, отнесенный к газовой фазе, Кг = = 0,7 кмоль м ч (кмоль/кмольуК Для построения линии равновесия имеются следующие экспериментальные данные  [c.337]

    Фирма Ликвихимнка для производства дрожжей предполагала использовать крупнотоннажный ферментер с циркуляционным перемешиванием, разработанный японской компанией Канегафучи объемом 1300 м , (рис. 4.12). Диаметр основной колонны 6,2 м, высота аппарата 30 м. Аппарат имеет основную колонну, в нижнюю часть которой начиняется компримированный воздух под давлением 3,8- 10 Па в количестве 36 тыс. норм. м /ч. Циркуляция среды обеспечивается винтовым перемешивающим устройством, направляющим газонасыщенную среду через встроенный в циркуляционный контур трубчатый теплообменник. Комбинированный принцип ввода энергии и перемешивания среды в этом аппарате позволяет эффективно турбулизпровать среду и диспергировать в ней газовую фазу. Средняя скорость сорбции кислорода в аппарате 4—6 кг О2/(ш ч) при коэффициенте массопередачи кислорода 450 ч . Производительность бнореактора при выработке дрожжей из н-парафинов — 36 т/сут нри удельных энергозатратах 2,5 кВт ч/кг биомассы. [c.205]


Смотреть страницы где упоминается термин Коэффициенты массопередачи и высота колонны: [c.82]    [c.206]    [c.253]    [c.254]    [c.258]    [c.102]    [c.125]    [c.170]    [c.170]    [c.144]    [c.159]    [c.239]   
Смотреть главы в:

Основные процессы и аппараты химической технологии -> Коэффициенты массопередачи и высота колонны

Основные процессы и аппараты химической технологии Изд.2 -> Коэффициенты массопередачи и высота колонны




ПОИСК





Смотрите так же термины и статьи:

Высота

Коэффициент массопередачи

Коэффициенты колонны

Массопередача

Массопередача массопередачи

Расчет коэффициентов массопередачи и высоты колонны



© 2025 chem21.info Реклама на сайте