Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерный электрический квадрупольный момент

    Спектроскопия ядерного квадрупольного резонанса (ЯКР) требует наличия несимметричного ядра и неоднородного электрического поля окружающих его электронов. Мерой несимметричности ядра (отклонения распределения заряда ядра от сферического) является ядерный электрический квадрупольный момент, мерой неоднородности электрического поля — градиент напряженности электрического поля. [c.327]


    Эффект ядерного квадрупольного резонанса обусловлен взаимодействием сферически несимметричного ядра атома с неоднородным электрическим полем окружающих его электронов. При этом мерой отклонения распределения заряда ядра от сферического является ядерный электрический квадрупольный момент, мерой неоднородности электрического ноля — градиент напряженности электрического поля. [c.742]

    ЯДЕРНЫЙ ЭЛЕКТРИЧЕСКИЙ КВАДРУПОЛЬНЫЙ МОМЕНТ [c.9]

    Разделенные изотопы также находят применение в спектроскопии и в физике твердого тела [1169]. Разницы в массах изотопов вызывают колебательные и вращательные изотопные эффекты в молекулярных спектрах. Разнообразные интересные спектроскопические эффекты вызваны разницей в значениях ядерного спина, магнитного момента и электрического квадрупольного момента для различных изотопов. Изучение этих эффектов очень трудно и иногда невозможно без наличия образцов, сильно обогащенных определенным изотопом. Исследование изотопных сдвигов в оптических спектрах атомов [670, 1170, 1847] дает возможность получить информацию о распределении заряда в ядрах различных изотопов и, следовательно, о размере, форме и структуре ядра. Многие из объемных свойств твердых тел зависят от масс атомов, и хотя эти эффекты малы и трудноопределимы, они изучались при рассмотрении электрической проводимости, температуры плавления, удельного объема, удельной теплоемкости и термоэлектродвижущей силы [1346]. Исследование в области сверхпроводимости показало, что критическая температура обратно пропорциональна атомной массе [ИЗО]. Методом дифракции рентгеновских лучей было рассмотрено различие кристаллических решеток LiF и LiF. Оказалось, что решетка LiF меньше на коэффициент 1,0002. Образцы разделенных изотопов нашли применение в качестве источников излучения. Они могут быть использованы для получения монохроматического излучения и, таким образом, пригодны в качестве эталонов длин волн и точного измерения длины. [c.462]

    Если ядро с квадрупольным электрическим моментом (ядерный спин 7 1 см. разд. 7.2 и рис. 7.1) находится в неоднородном электрическом поле, являющемся следствием асимметрии электронного распределения, то может возникнуть градиент электрического поля (см. ниже). Квадрупольное ядро будет взаимодействовать с этим градиентом электрического поля в различной степени в зависимости от различных возможных ориентаций эллиптического квадрупольного ядра. Поскольку квадрупольный момент возникает в результате несимметричного распределения электрического заряда в ядре, нас будет больше интересовать электрический квадрупольный момент, нежели магнитный момент. Число разрешенных ядерных ориентаций определяется ядерным магнитным квантовым числом т, которое принимает значения от -(- / до — 1 (всего 27 -Ь 1). Низший по энергии уровень квадруполя соответствует ориентации, для которой наибольшая величина положительного ядерного заряда располагается ближе всего к наибольшей плотности отрицательного заряда в электронном окружении. Разности энергий различных ориентаций не очень велики, и при комнатной температуре в группе молекул существует распределение ориентаций. Если электронное окружение ядра является сферическим (как в С1 ), то все ядерные ориентации эквивалентны и соответствующие энергетические состояния квадруполя вырождены. Если сферическим является ядро (/ = О или 1/2), то энергетических состояний квадруполя не существует. В спектроскопии ЯКР мы изучаем разности энергий невырожденных ядерных ориентаций. Эти разности энергии обычно соответствуют радиочастотному диапазону спектра, т.е. от 0,1 до 700 МГц. [c.260]


    Ядерный квадрупольный резонанс имеет ограниченную применимость для полимеров, так как в них редко встречаются ядра, обладающие электрическим квадрупольным моментом. Однако введение в полимер кристаллических порошков, содержащих такие ядра, дает возможность оценивать внутренние напряжения. [c.278]

    В отдельных случаях, когда в состав полимеров входят атомы с ядрами несферической формы, обладающими электрическим квадрупольным моментом, находит применение метод ядерного квадру-польного резонанса. Этим методом можно, в частности, эффективно оценивать внутренние напряжения в полимерах. [c.231]

    Электронное окружение квадрупольного ядра в молекуле, не обладающее сферической симметрией, создает неоднородное электрическое поле, которое характеризуется градиентом напряженности электрического поля на ядре (рис. IУ.2). Имеет место взаимодействие ядра, обладающего электрическим квадрупольный моментом eQ с градиентом поля ед. Энергия этого взаимодействия зависит от ориентации эллипсоидального квадрупольного ядра относительно системы главных осей тензора градиента электрического поля, а ее мерой является константа квадрупольного взаимодействия Аналогично тому как квантуется энергия вращающегося электрона в поле положительного ядра, квантуется и энергия квадрупольного взаимодействия. Иными словами, возможны различные квантованные ориентации ядерного квадрупольного момента и соответствующие квадруполь-ные уровни энергии. Эти уровни присущи данной молекулярной системе, т. е. являются ее свойством, в отличие от зеемановских уровней ядер и электронов в спектроскопии ЯМР и ЭПР, которые появляются при воздействии внешнего магнитного поля. Разности энергий, как и сами энергии квадрупольного взаимодействия, зависящие от электрического квадрупольного момента ядра eQ и градиента неоднородного электрического поля е , невелики, и переходы соответствуют радиочастотному диапазону 1(И, 10 Гц, Прямые [c.90]

    Спин-решеточная релаксация, обусловленная взаимодействием электрических квадрупольных моментов ядер со спином />1. с электрическими полями молекулы — еще один механизм обмена энергией между спиновой системой и решеткой. По этой причине линии в спектрах таких ядер, как Н, М, и др., могут быть очень широкими. Ядерная квадрупольная релаксация может оказать влияние на ядра со спином /=1/2, если они находятся на близком расстоянии от ядра со спином 7>1. [c.61]

    Для ряда атомов распределение заряда ядра не имеет сферической симметрии. В общем случае распределение заряда в ядерных сфероидах вытянуто вдоль направления ядерного спина Улг, либо сжато (рис. 31.9) и носит название осевого квадруполя. Электрическим квадрупольным моментом Q могут обладать лишь ядра с /лг 1. [c.742]

    Ядра, имеющие спин, равный О, имеют одно энергетическое состояние в магнитном поле (2-0+1). Они не являются объектами исследования ЯМР-спектроскопии. Ядра со спином 1 и больше, кроме магнитного момента, обладают электрическим квадрупольным моментом. Их свойства могут быть исследованы при помощи ядерного квадрупольного резонанса ( Н, С1, Вг, 1). [c.96]

    Спектроскопия ядерного квадрупольного резонанса (ЯКР) применяется в химии несколько реже методов магнитной радиоспектроскопии. Метод ЯКР основан на поглощении радиоволн за счет изменения ориентации электрических квадрупольных моментов некоторых ядер (С , и др.) в неоднородных внутримолекулярных электрических полях, создаваемых валентными электронами. Положение линий ЯКР чрезвычайно сильно зависит от тонких деталей структуры исследуемого вещества, но недостаточная чувствительность метода ограничивает его применение чистыми кристаллами с относительно высоким содержанием атомов, ядра которых обладают квадрупольным моментом. В настоящее время разрабатываются импульсные спектрометры ЖР повышенной чувствительности, которые уже в последние годы привели к более широкому распространению метода ЯКР в химических исследованиях. [c.294]

    Можно показать в общем виде, исходя из квантово-механического рассмотрения симметрии, что ядра со спином / > /г, как правило, не обладают точно сферическим распределением заряда [89]. У всех ядер спиновая ось является осью симметрии и распределение заряда представляет эллипсоид вращения, который может быть вытянутым или сплюснутым. Это отклонение от сферической симметрии, которое характерно для ядер с / > >/2, количественно выражается электрическим квадрупольным моментом ядер. Квадрупольный момент является тензором, но его можно охарактеризовать единичной скалярной величиной Q, называемой электрическим квадрупольным моментом. Важность ядерного квадрупольного момента в явлении магнитного резо нанса связана с тем, что он в заметной степени взаимодействует с неоднородным атомным электрическим полем и это взаимодействие обычно приводит к резким изменениям спектра ЯМР особенно в твердых веществах. [c.35]


    Ядра, обладающие магнитным моментом большим, чем /г — 1, /2 И Т. д., имеют, кроме магнитного, электрический квадрупольный момент. Время релаксации таких ядер слишком мало для того, чтобы можно было получить узкие сигналы. Правда, для них возможно применение другого варианта радиоспектроскопии — ядерного квадрупольного резонанса (ЯКР). Для этого вещество переводят в кристаллическое состояние (если надо, охлаждая жидким азотом) и для полученных сигналов определяют только их резонансную частоту. Это дает информацию и о химическом окружении квадрупольного атома, и о свойствах кристаллической решетки. [c.219]

    Метод ядерного квадрупольного резонанса (ЯКР) дает возможность измерять неоднородность внутренних электрических полей в молекулах в месте нахождения атомных ядер, если последние обладают электрическим квадрупольным моментом. Энергия взаимодействия между ядерными квадрупольными моментами и градиентами внутримолекулярных электрических полей соответствует частотам, относящимся к области радиоволн. Переходы между энергетическими уровнями можно регистрировать с помощью несколько видоизмененной аппаратуры, применяемой в методе ядерного магнитного резонанса (ЯМР). [c.201]

    Ядро со спином /> 1 имеет также квадрупольный момент, и неспаренный электрон взаимодействует как с ядерным магнитным моментом, так и с электрическими квадрупольными моментами. Градиент электрического поля у ядра может взаимодействовать с квадрупольным моментом, как в ядерном квадру-польном резонансе, и это взаимодействие влияет на спиновые энергетические состояния в виде возмущения второго порядка через ядерное магнитное взаимодействие. Влияние квадрупольного взаимодействия обычно довольно сложно, так как оно сопровождается гораздо большим магнитным сверхтонким взаимодействием. Ориентации ядра квантованы как по отношению к градиенту электрического поля, так и по отношению к оси магнитного поля. Если направление магнитного поля параллельно оси кристалла, единственным квадрупольным эффектом будет небольшое смещение всех энергетических уровней на постоянную величину, что не вызывает изменений в наблюдаемых переходах. Если же, однако, две оси не параллельны, имеется конкуренция между электрическим и магнитным полями. Это вызывает два изменения сверхтонких линий во-первых, смещение всех энергетических уровней на постоянную величину и, во-вторых, изменение расстояния между уровнями, вследствие чего расстояния между крайними линиями больше, чем между средними. [c.374]

    Если спин ядра /> /2, то обычно процесс магнитной релаксации происходит очень эффективно. Это определяется наличием у таких ядер электрического квадрупольного момента, который взаимодействует с электрическим полем вокруг ядра. Это электрическое поле возникает во всех случаях, когда симметрия окружения ядра отличается от кубической. Электрический квадруполь-ный момент стремится ориентироваться вдоль градиента электрического поля, который, поскольку это поле имеет внутримолекулярную природу, будет менять свое направление по отношению к приложенному извне магнитному полю при вращении молекулы. Ядерный магнитный момент стремится ориентироваться в том же направлении, что и квадрупольный момент, так что в целом это приведет к усилению релаксации. Обычно этот процесс идет весьма эффективно, поэтому времена Г1 и Гг для ядер с /> /2 обычно очень короткие. Прямое следствие этой [c.394]

    Особое место среди методов ядерной радиоспектроскопии занимает ядерный квадрупольный резонанс (ЯКР). ЯК исследуется на ядрах элементов, обладающих электрическим квадрупольный моментом. В их число входят ядра таких важных для химии элементов, как хлор, бром, иод, бор, алюминий, азот, сурьма и др. Ядерным квадрупольный моментом обладают ядра свыше 60 изотопов различных элементов. [c.6]

    Ядра со спином, большим /2, помимо дипольного магнитного момента обладают электрическим квадрупольным моментом, что приходится учитывать при исследовании ядерного резонанса. Важнейшими ядрами такого вида являются Е) и Ядра многих других изотопов, имеющих важное значение в органической химий, — в первую очередь галогенов (кроме фтора), — также обладают [c.8]

    Изотоп Частота ЯМР для поля в 10 кЭ., МГц Содержание в природе, 0,- Относительная чувствительность для одинакового числа ядер Магнитный момент в единицах ядерного магнетона ( >/ /4тГНИ ) Спин / в единицах / /2л Электрический квадрупольный момент Q в единицах Ю - см Анизотропное сверхтонкое взаимодействие В, МГцб Изотропное сверхтонкое взаимодей- ствие /1о. МГц  [c.437]

    Спектры органических аминов еще в большей степепи, чем гидроксильных соединений, определяются внешними факторами — характером растворителя, концентрацией раствора, присутствием примесей. Это связано со сравнительно высокой основностью аминов и их способностью к солеобразованию, а также способностью аминов, подобно гидроксильным соединениям, обменивать протоны, соединенные с атомом азота. Другая особенность спектров азотсодержащих веществ связана с тем, что наиболее распространенный изотоп азота обладает спином / = 1 и электрическим квадрупольным моментом, влияние которого на вид спектра зависит от свойств амина и в значительной мере определяется внешними факторами. Другой стабильный изотоп азота — — также обладает ядерным магнитным моментом, причем благодаря тому, что его ядерный спин равен 2, соединения с изотопом азота более удобны для исследования методом ЯМР как с возбуждением резонанса протонов, так и нри осуществлении резонанса непосредственно на ядрах Однако, так как содержание этого изотопа в природной смеси лишь 0,365%, то эти исследования относятся скорее к специальной области. [c.253]

    Изотоп Частота ЯМР для поля в 10 кЭ, МГц Содержание Относительная чувстви-в природе, гельность для одинако-вого числа ядер при посто- при постоян-янном поле ной частоте Магнитный момент в единицах ядерного магнетона еИ/ 4птс) Спин ] в единицах h/2n Электрический квадрупольный момент Q в единицах 10 ми Анизотропное сверхтонкое взаимодействие В, МГн " Изотропное сверхтонкое взаимодействие, 4о, МГц  [c.440]

    Часто возникает уширение резонансных сигналов протонов, связанных с атомными ядрами, имеющими электрический квадруполь-ный момент. Величина электрического квадрупольного момента служит мерой несферичности распределения электрического заряда в ядре. Электрический квадрупольный момент имеют лишь ядра со спиновым числом >7г- Наиболее распространенным примером ядер этого типа могут служить ядра азота (7 = 1). В молекулах часто существуют очень неоднородные локальные электрические поля. Тепловое движение таких молекул вызывает эффективное взаимодействие ядерного квадруполя с хаотически меняющимися во времени электростатическими полями ядро быстро отдает спиновую энергию решетке. Поэтому ядра, обладающие квадрупольными моментами, обычно имеют малые времена спин-решеточной релаксации, а ЯМР-сигналы протонов, связанных с этими ядрами, соответственно уширены. [c.73]

    Известно, что многие ядра, имеющие спиновое квантовое число / 1, обладают электрическим квадрупольным моментом eQ, который служит мерой отклонения распределения электрического заряда в ядре от сферически симметричного. Когда такое ядро находится в неоднородном электрическом поле, обусловленном асимметрией электронного распределения в молекуле, то за счет взаимодействия квадрупольного момента eQ с полем происходит расщепление вырожденных энергетических состояний ядер на некоторое количество подуровней. Указанное расщепление, зависящее от градиента электрического поля, определяется возможностью различных квантовых ориентаций момента eQ относительно поля, число которых равно 2/4-1. В опытах по ядерному квадрупольному резонансу (ЯКР) с помощью внешнего радиочастотного излучения наблюдают резонансные радиационные переходы между указанными выше подуровнями, сопровождающиеся, очевидно, переориентацией квадрупольного момента ядра в поле электронного остова молекулы. [c.88]

    Магнитный момент Тс равен +5,6805 ядерных магнетона, электрический квадрупольный момент = (0,34 0,17) X X см . [c.93]

    Ядра со спином / = О не имеют магнитного момента и не чувствительны к методу ЯМР. Ядра со спином /2 наиболее удобны для исследования методом ЯМР. Особенно большой чувствительностью к методу обладают протоны и ядра Ядра со спинами, большими /г, обладают также электрическим квадрупольным моментом. Наличие квадрупольного момента сильно усложняет наблюдение сигналов ЯМР, однако такие ядра могут быть изучены методом ядерного квадрупольного резонанса (ЯКР). Метод ЯКР имеет меньшее значение для органической химии и здесь не рассматривается. Для исследования с помощью ЯМР используются главным образом протоны, поскольку они присутствуют почти в каждой органической молекуле, а также в связи с особой чувствительностью протонов к этому методу. В дальнейшем речь будет идти почти исключительно о протонном магнитном резонансе (ПМР)., [c.558]

    Ядра со спиновым квантовым числом 1 или более -( Н, С1, 2 С1, Со, Вг, Вг и другие) обладают не только магнитным моментом, но также и электрическим квадрупольным моментом (данные о квадрупольных моментах ядер приведены в табл. 175 разд. У1П.Л), который можно представить себе как два равных по величине и противоположно направленных (антипараллельных) электрических диполя. Наличие у ядра электрического квадрупольного момента обусловлено несферическим распределением ядерного заряда. Если ядро находится в однородном электрическом поле, оба диполя испытывают действие одинаковых по величине, но противоположно направленных моментов вращения, и никакого эффекта не наблюдается. Примером этого случая является ядро хлора в хлорид-ионе или серы в молекуле SFe, где не наблюдается сигнал ЯКР, несмотря на то что оба ядра обладают квадрупольным моментом. Если же ядро с квадрупольным моментом находится в неоднородном электрическом поле, как это, например, имеет место в молекулах H I или H2S, то на каждый из двух антипараллельных диполей действуют различные силы, и такое ядро может принимать в электрическом поле 21 т - 1 различных дозволенных ориентаций. Энергетические различия м жду этими ориентациями проявляются в спектре резонансного поглощения радиочастотного излучения в диапазоне 2—350 МГц. Разности энергий этих ориентаций определяются распределением заряда (электронов) в молекуле, и поэтому резонансные частоты переходов в спектрах ЯКР зависят от структуры и конформации молекулы и в этом отношении аналогичны химическим сдвигам в спектрах ЯМР. [c.355]

    Ядерный электрический квадрупольный момент eQ является мерой отклонения распределения электрического заряда в ядре от сферической симметрии. Качественно можно представить четыре возможных типа ядра (рис. IV.1). Если суммарный спин ядра /а и, следовательно, его магнитный момент fin равны нулю (рис. IV.1, а), то распределение заряда в ядре характеризуется сферической симметрией, и квадрупольный момент eQ отсутствует. Распределение заряда остается сферическим, т. е. eQ==0, и при спине ядра 1а= /2, когда ЦпфО (рис. IV.I, б). Если / 1 (цп О), то сферическая симметрия распределения заряда нарушается, и появляется электрический квадрупольный момент eQ= 0. На рис. [c.89]

    Ядерный электрический квадрупольный момент eQ — мера отклонения распределения электрического заряда в ядре от сферической симметрии eQфQ, если /а>1 (/а — спин ядра). Все известные величины eQ лежат в пределах — 2<е<3< + 10 барн (барн=10 м ). [c.276]

    Взаимодействие ядерного электрического квадрупольного момента eQ с градиентом электрического поля, с его компонентой 7 = d VIdz на ядре приводит к расщеплению ядерного уроня на подуровни с собственными значениями [c.99]

    Помимо указанных методов радиоспектроскопии к hhjvi относится еще один метод ядерного квадрупольного резонанса (ЯКР)> обусловленный электрическими квадрупольными моментами ядер. В основном его применяли для исследования кристаллов низкомолекулярных веществ и лищь только в "последнее время он стал использоваться при измерениях внутренних напряжений в полимерах. [c.268]

    Элемент (изотоп), чвстаца Частота ЯМР для поля-10. Гс(МГц) Относительная чувствительность для равного числа ядер Магнитный момент (в еднвнцах ядерного магнетона) Спин Электрический квадрупольный момент-10- . см  [c.266]

    Ядра со спином имеют сферически симметричное распределение заряда и поэтому не взаимодействуют с электрическим полем молекулы. Ядра же со спином 1 и более имеют электрические квадрупольные моменты, и можно считать, что распределение заряда у этих ядер имеет форму сфероида, вокруг главной оси которого происходит вращение ядра. Квадрупольный момент может быть положительным (вытянутый сфероид) или отрицательньш (сплюснутый сфероид). Энергии сфероидальных зарядов зависят от их ориентации относительно градиентов окружающего электрического поля. В молекулах определенного типа, в которых преобладает сферическое или тетраэдрическое распределение заряда (например, в ионе аммония ЫН4), электрические градиенты либо отсутствуют, либо незначительны, вследствие чего не происходит возмущения квадрупольного момента за счет колебательных движений молекулы. Однако у большинства молекул градиенты электрического поля значительны и могут взаимодействовать с ядерными квадруполями. В результате колебательные движения остова таких молекул могут вызывать быстрые изменения спиновых состояний. Это еще один механизм обмена энергией между спиновой системой и решеткой, т. е. один из важных вкладов в спин-решеточную релаксацию он может приводить к заметному уширению резонансных сигналов. По этой причине линии в спектрах таких ядер, как или N (квадрупольный момент Q положителен) или О, и (Q отрицателен), могут быть настолько широкими, что их трудно или даже невозможно обнаружить. Ядерная квадрупольная релаксация может также оказывать влияние на ядра со спином /г, если они находятся в достаточной близости от ядра со ОПИНОМ 1. Мы рассмотрим эти вопросы в гл. 13. [c.35]

    Несколько работ посвящено изучению ядерных свойств различных изотопов технеция [6, 211, 311, 323, 348]. Для наиболее изученного Тс спин ядра равен /г, магнитный момент +5,657 ядерного магнитона, электрический квадрупольный момент ( = 0,3- [c.9]

    Несколько работ посвящено изучению ядерных свойств различ- 7ых изотопов технеция [6, 211, 311, 323, 348]. Для наиболее изученного Тс спин ядра равен /г, магнитный момент +5,657 ядерного магнитона, электрический квадрупольный момент Q = 0,3- 10 см . Сравнение изомерных переходов в ядрах Тс , Тс , Тс и Тс позволило сделать вывод о том, что во всех этих ядрах основные состояния отвечают протонным уровням 1 7,, а возбужденные состояния — 2р7,. Для изомерного перехода ядра Тс " наблюдается зависимость константы радиоактивного распада от химического состояния технеция, связанного со структурой электронной оболочки. Как следует из представленной на рис. 1 схемы распада ядра Тс " [243], в большинстве случаев (98,6%) этот распад происходит двумя ступенями сначала испускается у-квант с энергией 2 кэв, а затем у-квант с энергией 140 кэв. Испускаемые при этом у-кванты с энергией 2 кэв в сильной степени конвертированы. Вследствие низкой энергии изомерного перехода конверсия происходит [c.9]

    В четвертом столбце дается сводка ядерных моментов. Применяются следующие обозначения i — спин (механический момент) в единицах И р. — магнитный дипольный момент в единицах ядерных магнетонов (ehj2m с) Q — магнитный омунольный момент в единицах ядерных магнетонов, умноженных на 10 24 см2", q — электрический квадрупольный момент в единицах 10 24 см1. [c.638]

    Спектроскопия ядерного квадрупольного резонанса (ЯКР применяется в химии несколько реже методов магнитной радиоспе троскопии. Метод ЯКР основан на поглощении радиоволн за счет из менения ориентации электрических квадрупольных моментов некото рых ядер (С , и др.) в неоднородных внутримолекулярны  [c.294]


Смотреть страницы где упоминается термин Ядерный электрический квадрупольный момент: [c.216]    [c.210]    [c.355]    [c.107]    [c.38]    [c.236]    [c.52]    [c.179]    [c.460]   
Смотреть главы в:

Применение ядерного квадрупольного резонанса в химии -> Ядерный электрический квадрупольный момент




ПОИСК





Смотрите так же термины и статьи:

Момент ядерный



© 2024 chem21.info Реклама на сайте