Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства напыленных металлов

    Свойства напыленных металлов 639 [c.639]

    Точно измерить прочность и адгезию напыленных металлических покрытий исключительно трудно. Свойства напыленных металлов очень сильно изменяются в зависи- [c.383]

    Цинк широко используется для электроосаждения, защиты мелких изделий из черных металлов, например метизов (покрытие наносится в барабане), крупных изделий, применяемых для технических сооружений (покрытие производится с использованием подвесок), а также для нанесения сплошного покрытия на лист, ленту и проволоку. Толщина покрытий может составлять от нескольких микрометров (главным образом, декоративных покрытий с ограниченной степенью защиты от коррозии) до 25 мкм (такие покрытия обеспечивают длительную защиту от коррозии основного слоя благодаря своим протекторным свойствам). Осадки большей толщины могут быть получены методом горячего цинкования или напыления металла. [c.100]


    Свойства напыленных металлов [c.639]

    Несмотря на последующее уплотнение, некоторая неоднородность все же остается, так что свойства напыленного металла всегда отличаются от свойств компактного. Проводимость, прочность и удлинение напыленного металла всегда меньще. Это делает напыленные металлы непригодными для некоторых целей. Поэтому выбирать метод напыления можно только после того, как выяснена [c.639]

    В то время как медноникелевые сплавы исследовались довольно подробно, работ, в которых бы описывались каталитические свойства сплавов никеля с серебром или золотом, чрезвычайно мало. В работе [295] наряду с медноникелевыми сплавами изучались также золото-никелевые катализаторы, которые готовились напылением металлов, полученных в результате соосаждения и последующего восстановления водородом. При добавлении даже малых количеств золота (порядка 10— [c.100]

    Фазовые превращения и структура напыленного покрытия являются причинами резкого изменения свойств материала покрытия по сравнению со свойствами исходного металла (табл. 5) [55]. Заметно снижается плотность покрытий (т. е. увеличивается пористость), вследствие чего уменьшается прочность при растяжении неметаллические включения — оксиды и нитриды — приводят к повышению прочности при сжатии и твердости покрытий. Исключение составляют цинковые покрытия, получаемые методом ГПН, у которых прочность на сжатие снижается, что не нашло еще достаточно обоснованного объяснения. Следует отметить, что данные о прочностных свойствах покрытий, приво- [c.41]

    Восстановление изношенных валов насосов методом плазменного напыления имеет ряд преимуществ огромное тепловое воздействие на обрабатываемую поверхность вала и уменьшение деформации последнего минимальная глубина проплавления, что обеспечивает незначительное перемешивание основного металла с металлом покрытия и достижение физикомеханических свойств покрытия, близких к свойствам напыляемого порошкового материала возможность нанесения на изношенную поверхность порошков различных составов и получения покрытий с заданными физико-механическими свойствами экономия материальных средств в результате получения покрытия с минимальными припусками на последующ>то механическую обработку [11]. [c.57]

    Свойства исходного металла и напыленного покрытия [c.42]

    При дробеструйной обработке поверхности металла, предшествующей напылению металла, создают наклеп на его поверхности, вследствие чего может увеличиться коррозионноусталостная стойкость. Нанесением соответствующего протекторного металлизационного покрытия также можно улучшить сопротивление действию коррозии там, где существуют условия, способствующие коррозионно-усталостному разрушению. При фреттинг-коррозии концентрационные кислородные элементы, образующиеся в мелких трещинах, и металлическая пудра, появляющаяся вследствие истирания при незначительном взаимном перемещении узлов соединения, вызывают локальную коррозию. После нанесения металлизационного покрытия повышаются антифрикционные свойства, снижается возможность относительного сдвига и обеспечивается протекторная защита. Оба эти фактора способствуют уменьшению разрушения. [c.46]


    При разработке проблем гальванопластики пользуются сведениями по конструированию форм материаловедению при проектировании и изготовлении форм и копий вакуумному напылению химическому и механическому нанесению электропроводных слоев кинетике образования и строению окисных, солевых разделительных слоев адгезии на границе раздела двух твердых фаз органическим электропроводным материалам для форм и разделительных слоев электролитическому осаждению металлов и сплавов и их свойствам в тонких и толстых слоях технологической оснастке гальванических процессов и оборудованию. Применение этих сведений на практике в целесообразной последовательности позволяет получать с различных форм (предметов) металлические (в будущем, возможно, и неметаллические) копии, которые являются инструментами или готовыми изделиями и которые либо невозможно изготовить традиционными методами, либо на это затрачивается много непроизводительного труда. [c.6]

    Состав и свойства напыляемых покрытий во многом определяются металлургическими параметрами процесса напыления металлов. [c.169]

    Идеальным в данном случае является процесс, обеспечивающий обволакивание металлом каждого волокна при низких температуре и давлении. Такой процесс может быть реализован тремя способами нанесением металла в электростатическом поле, путем электролиза или при разложении газообразных соединений металла. Перспективными являются процессы получения полуфабрикатов из углеродных волокон путем плазменного напыления металла, пропускания волокон через расплав металла, горячего прессования в режиме контактного плавления, циклического вакуумного горячего прессования, пропитки в режиме сверхпластичности и т. д. [144]. Повышение свойств металл-уг-леродных композитов достигается также путем предварительного нанесения на поверхность волокна другого металла (например, меди для получения композита со свинцово-оловянным сплавом [153]) или применением в качестве матрицы сплавов, легированных небольшими добавками другого компонента (например, добавкой 0,1—10% хрома, ванадия или титана к меди [154]). [c.183]

    Поверхность металлизированных изделий не имеет металлически чистого вида, причем даже на изломе. Только после дополнительной отделки она приобретает металлический блеск. Покрытия из распыленного металла характеризуются хорошей обрабатываемостью. Их можно подвергать обточке, сверловке, а также обрабатывать щеткой, шлифовать и полировать. При этом следует помнить, что поверхностная твердость и прочность напыленных покрытий при сжатии всегда выше (вследствие наклепа), чем аналогичные свойства исходных металлов. Напыленный металл сам по себе хрупок, мало растяжим и обладает гораздо меньшей ударной вязкостью, чем литье.  [c.126]

    Основным методом получения алюминиевых покрытий в данное время является горячий метод. К менее распространенным способам относятся диффузионный, металлизация, вакуумное напыление, плакирование и другие. Эти методы не экономичны в смысле расхода алюминия и часто не обеспечивают нужного качества покрытия (пластичность, беспористость, равномерность). Так называемые горячие — наиболее распространенные методы получения алюминиевых покрытий [1—4] мало пригодны для защиты стального проката, подвергающегося в дальнейшем деформациям. Это объясняется хрупкостью покрытия, обусловленной появлением значительной прослойки интерметаллидов железо-алюминий. Кроме того, нагревание до 700—750° С необходимое для нанесения расплавленного алюминия может привести к нежелательному изменению некоторых физических свойств защищаемого металла. [c.311]

    В последние годы широко применяют металлизационный метод плазменного напыления, позволяющий наносить любые материаль , в том числе тугоплавкие металлы и окислы, создавая покрытия с заданными эксплуатационными свойствами износостойкие, коррозионно-стойкие, жаростойкие, электроизоляционные и др, [c.110]

    В адгезионных соединениях, полученных напылением металлов на кислородсодержащие полимеры, состав и свойства пограничного слоя обусловлены окислительными процессами, происходящими в процессе напыления. Из анализа данных, полученных методом РФЭС, следует, что на границе раздела образуются хелатные соединения, увеличивающие адгезионную прочность [186]. [c.109]

    Поры играют важную роль в защитных свойствах напыленного алюминия. Его поведение совершенно отличается от поведения массивного металла. Распыление алюминия на практике используют для защиты от коррозии деформируемого алюминия. Пористость алюминиевых покрытий несколько выше, чем цинковых, причем открытая пористость может достигать 10%, хотя обычно она близка к 5%. Каждая частица [c.381]

    Длительность диффузионной пайки зависит от свойств основного металла и припоя, количества жидкой фазы в шве, температуры пайки, условий нанесения припоя. На рис. 71 по данным автора и И. Ю. Марковой показана зависимость продолжительности диффузионной пайки магния от толщины слоя припоя при нанесении припоя в виде серебряной фольги и покрытия методом ионного напыления. [c.217]


    Напыляемая деталь не нагревается, температура ее поверхности редко превышает 150 С. Поэтому ее металл не претерпевает металлургических изменений, кроме тех случаев, когда металлургическая обработка деталей делается специально перед их напылением. За исключением легкого окисления, напыля-елшй металл по химическому составу остается таким же, как металл расплавляемой проволоки или порошка, но его физические свойства отличаются от свойств исходного металла в монолитной форме. Плотность напыленного металла снижается на 6—18%, так как напыленные слои имеют пористое строение. Пористость изменяется в зависимости от вида металла и условий его напыления, обычно составляя около 10%, но для 2н и Си она может возрастать до 20%, а для А1 — до 30%. [c.626]

    При газовой металлизации происходит более мелкое и равномерное распыление металла. При электрической металлизации из-за невозможности одинакового оплавления концов проволоки в напыленном слое обнаруживают частицы различных размеров — от 10 мкм до 100 мкм. Такая неоднородность частиц по размерам ухудшает физико-механические свойства металлизированных покрытий. [c.280]

    К механическим факторам, которые необходимо учитывать при выборе покрытия, относятся, в основном, нагрузки либо динамические, либо статические. Воздействие тепла при нанесении расплавленного металла и, в меньшей степени, в процессе напыления металла может неблагоприятно сказаться на механических свойствах основного металла. В результате частичного или полного отжига прочность изделия не будет соответствовать его назначению или при нанесении покрытия оно может быть искажено настолько, что последующая сборка будет затруднена или невозмон<на. [c.129]

    Бредер с сотрудниками [111] исследовали поверхностные потенциалы и намагниченность с целью найти способ для различения ионной и ковалентной связей при адсорбции Н2 и О2 на никеле. В -зоне никеля, определяющей магнитные свойства этого металла, содержится 9,4 электрона, 0,6 дырки и 0,6 неспаренного электронного спина на каждый атом. Измерения поверхностных потенциалов проводились на напыленной никелевой пленке, а намагниченность изучалась на никель-кремне-земном катализаторе, свойства которого считались вполне сравнимыми со свойствами металлической пленки. [c.126]

    Отрицательное влияние отжига, который имеет место в процессе напыления металли ческого покрытия, исключается при при менении правильной технологии процесса Сжимающие напряжения, которые создают ся в основном металле в результате обра ботки его обдувкой дробью, могут изме нить усталостные свойства материала [17  [c.396]

    При электронно-микроскопическом изучении препаратов, напыленных металлом, можно видеть, что промежуточные филаменты-в отличие от актиновых полимеров и микротрубочек, состоящих из глобулярных субъединиц-образованы нитевидными молекулами. Как полагают, в составе филамента эти фибриллярные полипептиды объединены в структуру типа каната, сходную с молекулой коллагена. Такое строение позволяет объяснить многие характерные свойства промежуточных филаментов, например высокое сопротивление растягивающим сшгам, которое может еще более увеличиваться при образовании ковалентных связей между субъединицами. [c.122]

    В Уральском научно-исследовательском трубном институте (УралНИТИ) разработан технологический процесс горизонтального эмалнроваЕШя труб, основанный на электростатическом и плазменном напылении порошкообразных эмалей. Как показали испытания, проведенные в УралНИТИ (табл. 14), эмалевые покрытия, полученные электростатическим и плазменным способами, по своим свойствам не уступают традиционным шликерным покрытиям. Они обладают большей сплошностью, лучшим сцеплением с металлом и другими более высокими показателями физико-механических и эксплуатационных свойств [c.98]

    Изучение закономерностей взаимодействия металлических расплавов с тонкими пленками металлов, нанесенными на неметаллические материалы, изменение степени смачивания (краевого угла) и адгезии расплав — металлическая пленка — подложка в зависимости от свойств контактирующих фаз, толщины металлизацион-ного слоя и других факторов позволяет выяснить механизм образования связей жидкого металла с твердой фазой, строение напыленных пленок, характер их взаимодействия с расплавом металла. Результаты таких исследований являются основой для разработки технологии металлизации и пайки неметаллических материалов. [c.15]

    С использованием низкоэнергетического возбуждающего источника света и сферического анализатора энергии электронов в задерживающем поле измерены УФ-фотоэлектронные спектры пленок Сьо толщиной 20 нм, напыленных в вакууме на медную подложку при комнатной температуре. Из полученных спектров определены пороговая энергия ионизации 1=6,17 эВ и работа выхода р=4,85 эВ, которая выше, чем в алмазе (4,5) и фафите (4,7 эВ), Получены оценки энергий поляризации катионов и анионов Сьо и элекфонного сродства Сбо в-твердой фазе, которые обсуждены с учетом энергетической релаксации молекул Сбо в конденсированном состоянии. Предложена энергетическая диаграмма твердого Сбо, показывающая, что уровень Ферми расположен вблизи дна зоны проводимости и, следовательно, кристаллический Сбо является полупроводником п-типа. Из физики твердого тела извe тнo что две другие аллотропные формы - графит и алмаз - являются соответственно металлом и диэлектриком. Фазой с металлическими свойствами (металлом) называется фаза, в которой либо не все квантовые состояния валентной зоны заняты электронами, либо последняя перекрывается зоной проводимости. При [c.130]

    По сравнению с другими сноссбами ианесения металлических покрытий этот способ является более совершенным. Основными его преимуществами являются возможность получения покрытий строго определенного состава, свойств и толщины, меньший расход металла, затрачиваемого на покрытие, повышенные механические и коррозионные свойства покрытий (кроме вакуумного напыления) отсутствие образования промежуточного хрупкого сплава, характерного для горячих методов покрытия возможность механи-заЩ1и и автоматизация процесса меньшие потери материалов по сравнению с химическим способом покрытия. [c.68]

    Теперь мы рассмотрим возможность такого электронного переноса между металлом и носителем, который изменяет объемные электронные свойства металлических частиц и вызывает тем самым модифицирование каталитических свойств металла. При этом межфазную поверхность раздела металл—носитель часто описывают как поверхность раздела металл—полупроводник с помощью общепринятой теории объемного заряда [71—73]. Электроны переносятся к металлу или полупроводнику в зависимости от того, где выше работа выхода, и между двумя фазами устанавливается разность потенциалов, численно равная разности работ выхода. В таком случае на поверхности полупроводника возникает объемный заряд соответствующего знака, плотность которого уменьшается по мере удаления от поверхности раздела внутрь носителя, а на поверхности металла индуцируется равный по величине, но противоположный по знаку заряд. Однако количественная оценка явлений с помощью этой теории приводит к весьма серьезным затруднениям, поэтому едва ли ее можно использовать для описания реальных свойств металла. Чтобы подтвердить этот вывод, обратимся к работе Баддура и Дейберта [73], изучавших поведение тонких пленок никеля, напыленных на германиевые подложки, легированные разным количеством добавок п- или / -типа такие пленки использовали как катализаторы дегидрирования муравьиной кислоты. Переносимый заряд пропорционален где п — концентрация носителей заряда в полупроводнике и V — разность потенциалов на новерхности раздела. Наиболее важной переменной является п, изменяющаяся на много порядков в зави- [c.282]

    Именно наличием подобного слоя объясняется повышенная коррозионная стойкость в окислительных средах сплавов алюминия, хрома, никеля, титана и др. металлов. Таким же образом (по при повышенных т-рах) Б. с. формируются на поверхности материалов, используемых при высокой т-ре. В процессе взаимодействия контактирующих веществ происходят реакционная диффузия одного или нескольких из них в твердый материал, образование слоя пересыщенного твердого раствора и последующая перестройка его кристаллической решетки. В результате на поверхности материала образуется слой новых фаз (рис.), скорость роста к-рых определяется природой контактирующих веществ и условиями взаимодействия (темиературой, давлением, концентрацией вещества, временем). Формирование такого слоя возможно газопламенным напылением и др. способом. Если условие Пиллинга — Бедвортса выполняется, закономерности роста фаз в заданном интервале т-р описываются в основном зависимостями г/" = кт или у = /с 1п т, где у — толщина слоя новой фазы к, п — коэффициенты скорости роста фаз т — время взаимодействия. Чем меньще коэфф. к и больше коэфф. п, тем меньше влияние времени на скорость взаимодействия и тем, следовательно, лучшими барьерными свойствами обладает диффузионный слой. Значения коэфф. пик определяются природой контактирующих веществ и продуктов взаимодействия, кристаллохим. особенностями образующихся фаз, дефектностью кристаллической решетки, диффузионной подвижностью компонентов в ней, термодинамикой процесса. В общем случае чем выше прочность межатомной связи (большая часть ковалентных или ионных связей) в продуктах взаимодействия, тем вероятнее проявление ими барьерных свойств. Так, дибориды титана и циркония, окислы алюминия, магния и тория обнаруживают высокие барьерные свойства в контакте со мн. веществами. [c.120]

    Углеграфитовые Ж. м. отличаются жаропрочностью в сочетании с высокой термостойкостью и низкой удельной массой. Жаростойкость таких материалов достигается нанесениел жаростойких покрытий. В тугоплавких стеклах и ситаллах жаростойкость сочетается со спец. оптическими свойствами и низким коэфф. термического расширения. Материалы на основе окислов и тугоплавких соединений, керамико-металличес-кие, композиционные и углеграфи-товыо материалы, жаростойкие бетоны и цементы получают из порошков с последующим формованием и отвердением (бетонов и цементов) или спеканием. Материалы на основе тугоплавких соединений и композиционные материалы могут быть получены методом горячего прессования. Металлические и некоторые композиционные Ж. м. на основе металлов получают методами металлургической технологии (плавление — литье — обработка давлением — термическая обработка) с целью получения заданных свойств. Для повышения жаростойкости на металлические и углеграфитовые материалы наносят жаростойкие нокрытия методами диффузионного насыщения, плазменного, газопламенного или детонационного напыления, газофазного (пиролитического), электрохим., хим. или электрофоретического осаждения. Так, молибденовые снлавы в результате обработки в парах кремния или в газовой смеси четыреххлористого кремния и водорода покрывают жаростойким слоем дисилицида молибдена. Аналогичная обработка углеграфитовых материалов приводит к образованию па их поверхности жаростойкого покрытия из карбида кремния. Высокая жаростойкость некоторых тугоплавких соединений и металлических сплавов определяется их способностью образовывать при высоких т-рах в контакте с хим. агрессивной средой поверхностные плотные слои тугоплавких нелетучих продуктов взаимодействия, являющихся диффузионным барьером и уменьшающих скорость хим. реакции. Так, многие силициды, карбиды хрома и кремния, [c.423]


Смотреть страницы где упоминается термин Свойства напыленных металлов: [c.111]    [c.53]    [c.63]    [c.50]    [c.143]    [c.143]    [c.143]    [c.104]    [c.142]    [c.347]    [c.270]    [c.127]    [c.119]    [c.142]    [c.477]    [c.348]   
Смотреть главы в:

Коррозия и защита от коррозии -> Свойства напыленных металлов




ПОИСК





Смотрите так же термины и статьи:

Металлы свойства



© 2025 chem21.info Реклама на сайте