Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы металлические чистые

    Ячейки теплопроводности являются наиболее широко применяемыми детекторами в газовой хроматографии. В этих детекторах в качестве элемента сопротивлений, реагирующего на изменения теплопроводности, применяются либо нагретая металлическая нить, либо термистор (полупроводник из плавленых окисей металлов). Для получения дифференциального сигнала чувствительному элементу детектора противопоставляется подходящий элемент сравнения. Нагретые элементы охлаждаются чистым газом-носителем и сопротивление их приобретает определенное значение. [c.211]


    В природе встречается сравнительно небольшое число чистых , или моноизотопных элементов, ядра атомов которых не имеют изотопов. Примеры F-19, Na-23, А1-27, V-51, Мп-55, Bi-209. В большинстве же случаев простые вещества представляют собой определенный, причем достаточно стабильный комплекс изотопов данного элемента. Это эле.менты-плеяды, или смешанные элементы. Например, чистое металлическое железо, получаемое из природных руд, представляет собой комплекс ядер с массами 54, 56, 57 и 58, олово получается в виде комплекса 10 изотопов и т. д. Изотопы данного элемента обозначают одинаковыми химическими символами. Исключение составляют изотопы водорода протий JH (ядро атома содержит только один протон, нейтронов в нем нет) дейтерий fD (1р, 1п) и тритий Т (1р, 2п). [c.14]

    Германий, олово и свинец — амфотерные элементы металлические свойства возрастают от германия к свинцу. Их получают в чистом виде, восстанавливая оксиды водородом. Олово и свинец получают, кроме того, восстанавливая оксиды углем и электрохимическим методом. [c.67]

    Нетрудно видеть, что все чисто ионные гидриды образуются 8-элементами, металлические — й- и /-элементами, неметаллические — [c.5]

    Измеряют pH в потоке нейтрализата [43] элементом, составленным из сурьмяного электрода и насыщенного каломельного электрода (рис. 42). Сурьмяный электрод / изготовлен из металлической чистой сурьмы в виде цилиндрика, запрессованного в стержень из фторопласта. К сурьме припаян провод, который [c.128]

    Опорные камни для свода и угловые камни в местах прилегания элементов металлической обвязки должны быть также обработаны получистой теской, а камни для сводов-—чистой теской с допуском по толщине и высоте 2 мм и по длине О—3 мм. [c.221]

    Эталоны готовят смешиванием окислов определяемых элементов с чистой двуокисью кремния. Чистота окислов определяемых элементов проверяется спектрально в каждом окисле допустимо присутствие следов аналитических линий других определяемых элементов. Кальций вводят в виде углекислого кальция. Окись магния, свободную от кальция, получают сжиганием чистого металлического магния окись магния собирается на платине. [c.30]

    У большинства металлов на внешней электронной оболочке имеется значительное число вакантных орбиталей и малое число электронов. Поэтому энергетически более выгодно, чтобы электроны не были локализованы, а принадлежали всему металлу. Согласно теории свободных электронов в узлах решетки металла находятся положительно заряженные ионы, которые погружены в электронный газ , распределенный по всему металлу. Таким образом, валентные электроны у металлов не локализованы. Между положительно заряженными ионами металла и нелокализованными электронами существует электростатическое взаимодействие, обеспечивающее устойчивость вещества. Энергия этого взаимодействия является промежуточной между энергиями ковалентных и молекулярных кристаллов. Поэтому элементы с чисто металлической связью ( - и / -металлы) характеризуются относительно невысокими температурами плавления и твердостью. Наличие электронов, которые могут свободно перемещаться [c.102]


    Очень часто эти элементы входили в состав оксидов, т. е. соединений кислорода. Чтобы выделить элемент, соединенный с кислородом, последний необходимо было удалить. В принципе под воздействием какого-либо другого элемента, обладающего более сильным сродством к кислороду, атом (или атомы) кислорода может покинуть первый элемент и присоединиться ко второму. Этот метод оказался эффективным. Причем часто роль второго, отнимающего кислород элемента выполнял углерод. Например, если железную руду, которая по сути является оксидом железа, нагревать на коксе (относительно чистая разновидность углерода), то углерод соединяется с кислородом при этом образуются оксиды углерода и металлическое железо. [c.65]

    Металлические гидриды используются как восстановители для получения покрытия из соответствующего металла, а также для получения металлов в виде порошков. В последнем случае металл, например Ti или V, насыщают водородом, образовавшийся хрупкий гидрид растирают в порошок и нагревают в вакууме, в результате чего получают порошок металла. Вследствие пластичности чистых металлов получить их порошки простым растиранием металлов не удается. Гидриды используют также в реакциях гидрирования, синтеза многих соединений d- и /-элементов. Гидрид титана представляет интерес в качестве хранилища водорода. [c.280]

    А. Металлические сплавы. Плотности чистых металлов связаны с их положениями в Периодической таблице системы элементов Д. И. Менделеева, но не следуют строго их атомным массам. Плотность сплава можно рассчитать в соответствии с массовыми долями чистых компонентов  [c.188]

    Представление о том, что коррозия порождается разностью потенциалов между анодными и катодными участками и ее скорость пропорциональна этой разности, лежит в основе так называемой теории микрогальванических элементов. Определенный вклад в суммарную скорость коррозии этот фактор действительно вносит. Однако вклад этот весьма невелик, обычно меньше 1—2 %, и исчезающе мал для чистых металлов. В первом приближении поверхность корродирующего металла можно считать изопотенциальной. Скорость коррозии определяется значением анодной плотности тока при коррозионном потенциале. Сказанное относится к микрогальваническим элементам, но не к полиметаллическим системам, где коррозия происходит при контакте разнородных металлических частей значительных размеров. Количественный анализ этих явлений приведен в [2а и 2Ь]. — Примеч. ред. [c.24]

    Переработка алюминиевых руд. Глинозем, применяемый для получения алюминия электролитическим путем, должен удовлетворять следующим требованиям быть очень чистым и не содержать более электроположительных по сравнению с алюминием элементов содержать минимальное количество воды быть негигроскопичным и обладать хорошей растворимостью в криолите. В СССР техническими условиями предусмотрено шесть марок глинозема. В производстве чистого металлического алюминия применяется глинозем только трех марок ГОО (0,06% 5102), ГО (0,08% 5102), Г1 (0,15% 5Юг). [c.479]

    Всю установку можно рассматривать как сложный гальванический элемент с двумя электролитами (жидкость в кювете и ионизированный воздух) и тремя ловерхностями обратимым электродом в жидкости, границей раздела воздух — жидкость и воздушным электродом. Только на одной границе (воздух — жидкость) разность потенциалов изменяется от присутствия пленки монослоя. Поэтому разность потенциалов, возникающую на границе пленки монослоя — воздух определяют следующим образом. Сначала измеряют электродвижущую силу элемента при наличии поверхности чистой воды, затем наносят пленку нерастворимой жидкости и измеряют электродвижущую силу нового элемента. Разность потенциалов в пленке находят как разность между электродвижущими силами элементов в присутствии пленки и без нее. Во избежание действия внешних электростатических сил всю установку экранируют заземленной металлической сеткой (на рис. 25 пунктирная линия). Электрометр можно заменить ламповым потенциометром с большим сопротивлением. [c.66]

    В сплавах внедрения атомы растворенного вещества образуют дополнительные связи с соседними атомами по сравнению с чистым растворителем, а это приводит к тому, что кристаллическая решетка сплава становится тверже, прочнее и менее пластичной. Например, железо, содержащее менее 3% углерода, намного тверже чистого железа и приобретает значительно большую прочность на растяжение, а также другие ценные физические свойства. Так называемые мягкие (малоуглеродистые) стали содержат менее 0,2% углерода они обладают высокой пластичностью и ковкостью и используются для изготовления кабелей, гвоздей и цепей. Средние (углеродистые) стали содержат 0,2-0,6% углерода, они жестче мягких сталей и используются для изготовления балок и рельсов. Высокоуглеродистые стали, применяемые для изготовления нож-нгщ, режущих инструментов и пружин, содержат 0,6-1,5% углерода. При введении в стали других элементов получают различные легированные стали. Одним из наиболее известных сплавов такого типа является нержавеющая сталь, содержащая 0,4% углерода, 18% хрома и 1% никеля. Сплавы типа твердых растворов отличаются от обычных химических соединений тем, что имеют произвольный, а не постоянный состав. Отношение содержания неметаллических элементов к металлическим может варьировать в них в широких пределах, что позволяет придавать этим материалам самые разнообразные физические и химические свойства. [c.364]


    Таким образом, на примере группы галогенов мы можем сделать следующий важный вывод общность в свойствах элементов одной группы обусловлена одинаковым строением внешней электронной оболочки атомов элементов этой группы, а закономерное изменение свойств (ослабление неметаллических и усиление металлических) при переходе от легких элементов группы к тяжелым вызывается увеличением чист электронных оболочек и ослаблением связи внешних электронов с ядром при возрастании размеров атомов. [c.62]

    Очевидно, при таком определении нормального потенциала условно принимается, что потенциал стандартного водородного электрода равен нулю. Так как при всех вычислениях э. д. с. элементов путем комбинирования величин Ев потенциал стандартного водородного электрода исключается, то его абсолютная величина не имеет значения. Согласно конвенции, принятой Международным союзом по чистой и прикладной химии в 1963 г., стандартный потенциал определяют путем измерения э. д. с. цепи, составленной так, что стандартный водородный электрод расположен слева, а металлический (или, вообще, из любого элемента) справа. [c.179]

    Защитные покрытия. Слои, искусственно создаваемые на поверхности металлических изделий и сооружений для предохранения их от коррозии, называются защитными покрытиями. Если наряду с защитой от коррозии покрытие служит также для декоративных целей, его называют защитно-декоративным. Выбор вида покрытия зависит от условий, в которых используется металл. Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, никель, медь, хром, серебро и др.), так и их сплавы (бронза, латунь и др.). По характеру поведения металлических покрытий при коррозии их можно разделить на катодные и анодные. К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. В качестве примеров катодных покрытий на стали можно привести Си, N1, Ag. При повреждении покрытия (или наличии пор) возникает коррозионный элемент, в котором основной материал в поре служит анодом и растворяется, а материал покрытия — катодом, на котором выделяется водород или поглощается кислород (рис. 74). Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждений покрытия. Анодные покрытия имеют более отрицательный [c.218]

    Таким образом, деление элементов на металлы и неметаллы — условное между элементами (Na, К, Са, Ва и др.) с чисто металлическими и элементами (Р, О, N. С1, 8, С и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами. [c.15]

    Металлический церий в смеси с другими элементами (А1, Са, М , V, Т1 и 51) используется в металлургии при изготовлении качественных сталей. Церий очищает металлическую ванну от азота, кислорода, серы и фосфора и делает шлак легкоплавким. Применяемый флюс в виде сплава содержит 5—15% церитовых металлов, 25—60% Л1 или 5—15%Са, Mg или 51 и 5—3% Т1, остальное — железо. Введение Се в металлический алюминий позволяет резко уменьшить в последнем содержание 51, нарушающего его структуру и снижающего прочность. В то время как нечистый металлический алюминий издает почти деревянный звук, металл, рафинированный церием, издает чистый колокольный звон. Церий в виде сплава с железом применяется для изготовления камней для зажигалок. [c.280]

    В молекуле окиси углерода между углеродом и кислородом действуют две ковалентные связи С 0 Электронные пары несколько смещены к более отрицательному кислороду, в результате чего молекула становится малополярной с дипольным моментом 0,12D. Полярность молекулы и наличие у атома углерода свободной пары электрона объясняет способность молекулы к реакциям комплексообразования. Оксид углерода может ыть лигандом по отношению к положительному иону металла и нейтральному атому d-элемента в последнем случае образуются карбонилы металлов. Карбонилы делятся на одноядерные, содержащие один атом металла [Сг(СО)б], [Ре(С0)5] и др., и многоядерные, содержащие от 2 до 4 атомов металла [Fe2( 0)eJ, [ o2(GO)g], [Rh4( 0)iJ, [RUg( 0)i2] и др. Координативная связь возникает за счет пары электронов углерода молекулы СО. Особенно легко образуют карбонилы металлы подгрупп хрома, марганца и 8В группы. Карбонилы, как правило, либо жидкости, либо летучие твердые вещества. При нагревании карбонила координативная связь разрывается и происходит разложение на окись углерода и металл [Ni( 0)4l = Ni + 4С0. Этим пользуются для получения чистых металлов, для нанесения металлической поверхности на тела, имеющие сложный рельеф. Карбонилы металлов 8В группы часто применяют в качестве катализаторов. Карбонилы железа используют в качестве антидетонаторов моторного топлива. [c.479]

    По мере возрастания числа внешних электронов (т.е. в направлении слева направо вдоль периода) склонность атома отдавать электрон, т. е. металлический характер элемента, ослабевает и уступает тенденции к присоединению электрона. Закономерность эта в наиболее чистой форме выражена во втором периоде. [c.86]

    Применение урана и его соединений обусловлено главным образом потребностями ядерной энергетики. При этом изотоп используется непосредственно как ядерное горючее, а — как сырье для получения вторичного горючего — Ри. Экономически целесообразным оказывается использовать в реакторах не чистый а обогащенную смесь и При этом легкий изотоп подвергается реакции деления, а тяжелый превращается в плутоний. В качестве материала для тепловыделяющих элементов реактора (твэлов) используют не только металлический уран, но и его соединения (иОа, изОв, ик, иС). Один из искусственно получаемых изотопов — — также является ядерным горючим. [c.441]

    К сплавам относят материалы, состоящие из двух или нескольких элементов и обладающие характерными свойствами металлов. Получение сплавов металлов имеет огромное практическое значение, поскольку это один из главных способов изменения свойств чистых металлических элементов. Например, чистое золото-слишком мягкий металл, чтобы его можно было использовать в ювелирном деле, тогда как сплавы золота с серебром обладают достаточной твердостью. Чистое золото считается 24-каратньш в ювелирном деле обычно применяют 14-каратный сплав золота, который содержит 58% чистого золота (14/24-100 = 58%). Такой сплав может иметь желтый или белый цвет в зависимости от добавляемых в него элементов. В большинстве случаев в технике редко используют чистые металлы как правило, технические металлы представляют собой сплавы. Примеры некоторых сплавов приведены в табл. 22.8. [c.363]

    Алюминий, галлий, индий и таллий химически активны и образуют многочисленные соединения. По мере увеличения порядкового номера металлические свойства увеличиваются так, если гидроокись алюминия обладает ярко выраженными амфогерными свойствами (см. 2, 3, гл X), то амфотерность гидроокисей галлия и индия проявляется намного слабее, а гидроокись таллия амфотерных свойств вообще не проявляет. Все эти элементы сходны по своим физико-химическим свойствам (окислы и гидроокиси амфотерны, способность солей к сильному гидролизу и т. д.), все элементы в чистом виде, а также их сплавы и соединения находят разнообразное применение и широко используются в современной технике. [c.330]

    Несмотря на трудность получения редкоземельных металлов, кристаллические структуры, а следовательно, и их плотности хорошо изучены. Объясняется это тем, что смеси чистого металла и хлористого калия получаются сравнительно легко восстановлением хлорида редкоземельного элемента металлическим калием. Эта смесь удобна для получения рентгенограмм по методу Дебая, так как хорошо известные линии присутствующего в смеси КС1 могут служить для калибровки рентгенограмм. В табл. 20 приведены результаты, относящиеся к структурам редкоземельных элементов (сводка составлена Боммером [196]). [c.84]

    Селен, теллур и полоний являются представителями шестой группы периодической системы элементов. Селен и теллур по своим свойствам несколько отличаются от полония. Сравнительно недавно физикам удалось показать, что ряд элементов в чистом виде является типичными полупроводниками. В табл. 8 полужирной рамкой выделены те элементы периодической системы, которые обнаруживают полупроводниковые свойства [1]. Справа от каждого элемента указана ширина занреш енной зоны, характеризующая электрические свойства полупроводника, слева — значение электроотрицательности, т. е. сила притяжения электронов в ковалентной связи. Из этих данных видно, что между указанными величинами имеется определенная корреляция. Закономерное изменение этих величин по вертикали и горизонтали свидетельствует о тесной связи между электрическими свойствами элементов и электронной структурой их атомов. Металлическая проводимость возрастает сверху вниз и справа налево, а изоляционные свойства— слева направо и снизу вверх. Теллур при низких температурах является типичным полупроводником полупроводниковые свойства селена проявляются в громадном увеличении электропроводности под действием света (фотопроводимость) полоний к полупроводниковому классу веществ не относится. [c.78]

    Чистые щелочноземельные металлы имеют более высокие температуры плавления и кипения по сравнению с щелочными металлами, потому что для образования металлических связей в них имеется по два электрона на атом. По той же причине они обладают большей твердостью, хотя их тоже можно резать острым стальньгм ножом. Бериллий и магний-единственные элементы этой группы, широко используемые как конструкционные. металлы благодаря своей легкости они используются в чистом виде или в составе сплавов в авиастроительной и космической промышленности, где вес является очень важным фактором. [c.436]

    На рис. 16-5 дано графическое представление молярных энтропий чистых элементов в различных физических состояниях. Все металлические твердые вещества обладают энтропией, не превышающей величины 80 энтр.ед. моль между 130 и 180 энтр.ед. моль атомных газов имеют еще более высокие значения. Хотя абсолютные энтропии вычисляются при ПОМОПЩ третьего закона термодинамики лишь на основе измерения тепловых свойств веществ, они позволяют получить [c.64]

    Среди простых солей, интерметаллидов, межокислителей и полусолей можно различать чистые (однородные) и смешанные (разнородные) соединения. Смешанные простые соли могут быть двух родов 1) с различными металлическими элементами (на- [c.122]

    Примером более слол<ного анализа является определение примесей в металлическом германии свойства этого материала, применяющегося, например, в качестве полупроводника для детекторов, чрезвычайно сильно зависят от присутствия очень малых количеств примесей других элементов. Для определения микропримесей редкоземельных элементов, сурьмы, молибдена, меди и др. поступают следующим образом . В ядерный реактор вводят испытуемый образец германия и чистый образец с известным количеством введенных примесей. После облучения образцы растворяют, вводят в качестве носителей-коллекторов нерадиоактивные изотопы определяемых элементов. Германий отгоняют в виде легколетучего тетрахлорида, а остаток подвергают разделению химическими методами, осаждая отдельно группу редкоземельных элементов, отдельно сурьму, медь и другие определяемые элементы. Активность выделенных фракций сравнивают с активностью фракций эталона и на этом основании вычисляют содержание микропримесей в испытуемом образце. Таким методом удается определить миллионные доли процента примесей редкоземельных элементов— до З-Ю / о сурьмы, молибдена и др. [c.21]

    В центральное и три периферийных гнезда металлического блока (см. рис. 14) устанавливают четыре сухих чистых стеклянных стакана. В центральный стакан наливают (приблизительно) 10—20 мл 0,1 М раствора СиЗОл, концентрация которого в ходе измерений не изменяется. В остальные стаканы наливают растворы РЬ(ЫОз)а в порядке возрастания концентрации (0,001, 0,01 и 0,1 Лi). В раствор Си304 опускают медный электрод свинцовый электрод опускают в раствор РЬ(ЫОз)г наименьшей концентрации. Полуэлементы соединяют солевым мостиком и измеряют э.д.с. гальванического элемента с помощью высокоомного милливольтметра. [c.61]

    ГАФНИЙ (Hafnium, от древнего названия Копенгагена) Hf — химический элемент IV группы 6-го периода периодической системы элементов Д. И. Менделеева, п. н. 72, ат. м. 178,49 природный Г. состоит из шести изотопов. Положение Г. в периодической системе предсказал Д. И. Менделеев задолго до его открытия. Основываясь на выводах Н, Бора о строении атома 72-го элемента, Д. Костер и Г. Хевеши обнаружили этот элемент в минералах циркония и назвали его. Г.— рассеянный элемент, не имеет собственных минералов, в природе сопутствует цирконию (I — 7%). Г.— серебристо-белый металл, т. нл. 2222 30 С чистый Г. очень пластичен и ковок, легко поддается холодной и горячей обработке. По своим химическим свойствам очень близок к цирконию, потому их трудно разделить. В соединениях Г. четырехвалентен. Металлический Г. легко поглощает газы. На воздухе Г. покрывается тонкой пленкой оксида HfOj. При нагревании реагирует с галогенами, а при высоких температурах — с азотом и углеродом, [c.65]

    В гидрофобизированных электродах, разработанных Л. Нидрахом и X. Элфордом, оптимальное распределение газа и жидкости в пористом теле достигается введением в него гидрофобных материалов (рис. 122,6). В качестве материала таких электродов используют высокодисперсные платиновые металлы в чистом виде пли на носителе (карбидах металлов, угле и т. п.). В качестве гидрофобизатора и одновременно связующего вещества применяют фторопласт или полиэтилен. Гидрофобизированный катализатор наносится на металлическую сетку или на пористую подложку из угля, пластмассы или других материалов. Запорным слоем электродов служит мелкопористая гидрофильная подложка или более гидрофильный наружный слой катализатора. Для гидрофобизированных электродов характерно постепенное увеличение степени гидро-фобности по мере перехода от электролита к газу. Гидрофобизированные электроды тоньше и легче, чем гидрофильные, поэтому их применение позволяет повысить удельную мощность топливного элемента. Кроме того, эти электроды могут работать практически при отсутствии перепада давления газа. [c.238]

    В качестве электролитов используют не чистые расплавленные хлориды, а растворы изучаемых хлоридов. Этот прием используют обычно в тех случаях, когда исследуемый хлорид или легколетуч при температуре плавления, или неплавок. Электродами сравнения в таких элементах служат металлические (свинцовые, серебряные, платиновые) либо хлорный электроды. [c.101]

    Рассмотрим гальванический элемент, в котором один из компонентов пары окислитель — восстановитель — металл. Погрузим пластинку из металлического цинка в раствор ZnS04, а медную — в раствор USO4. Система Zn VZn и система u V u образуют две сопряженных пары окислитель — восстановитель, т. е. два электрода. Соединив их мостиком из раствора какой-либо соли, например КС1, который особенно часто используют для этой цели, получим гальванический элемент, схема которого изображена на рис. 76. Поскольку в обоих случаях восстановленный компонент является чистым элементом, то в обоих случаях AGRed = 0. Следовательно, [c.255]

    Однако наряду с ценными качествами металлы обла-дзЕОт такими свойствами, которые оказываются нежелательными при изготовлении различных изделий. Так, например, медь и алюминии обладают хорошей электро- и теплопроводностью, пластичностью, но эти металлы довольно мягки, они легко деформируются и поэтому в чистом виде оказываются малопригодными для изготовления металлических предметов. Поэтому металлы в чистом виде используются гораздо реже, чем сплавы. Сплавы состоят из двух или более элементов, для их [c.320]

    В чистом виде гафний, подобно другим элементам подгруппы титана,— металл, по внешнему виду похожий на сталь. При низкой температуре устойчив. При высокой температуре, наоборот, химически очень активен. Это является общей чертой металлов Ti, 2г и Ш при нагревании они энергично соединяются с галоидами, кислородом, серой, углеродом и азотом. Карбид Н1С очень тугоплавок (/ л 3890°). Карбиды металлов подгруппы титана общей формулы ЭС (Т1С, 2гС и НГС) — очень твердые кристаллы металлического вида, применяются при изготовлении твердых сплавов. Сплав, состоящий нз 80%ДЮ и 20% НГС, отличается высокой тугоплавкостью 4215°). Высокая температура плавления характерна и для двуокиси гафния Н10а (2770°). [c.464]

    Рассмотрим, как это осуществляется, на примере получения металлического алюминия. Так как у атомов алюминия на внешнем уровне малое число электронов, то он по химическим свойствам подобен металлам, образованным -элементами. При электролитическом получении алюминия специальная электролитическая ванна, выложенная графитом, заполняется чистыми АиОз и К азА1Ре, которые расплавляются при температуре >1200°. Графитовые (или угольные) плиты, которыми выложена ванна, служат катодом, а анодом являются опущенные в расплав графитовые пластины. Сила тока составляет около 35 ООО А, напряжение 4—5 В. В результате электролиза на катоде образуется алюминий (собирается на дне ванны), на аноде выделяется кислород  [c.104]

    Эффективный заряд атома, входящего в состав соединения, определяется как алгебраическая сумма его отрицательного электрон-мого заряда и положительного заряда ядра. В настоящее время известно более десятка экспериментальных методов определения значений эффективных зарядов в большинстве своем с точностью 0,1 — Д,3 е, что соизмеримо с точностью вычисления этих зарядов в квантовой химии и теории твердого тела. В табл. 10 приведены данные по эффективным зарядам атомов, которые получены рентгеноспектральным методом для ряда типичных неорганических веществ. Знако.м -Ь отмечены эффективные заряды на металлических элементах, знаком — на электроотрицательных атомах. К чисто ионным соединениям близки только галогениды щелочных металлов, хотя и для них эффективные заряды не достигают единицы. Все остальные соединения, в том числе галогениды, оксиды, сульфиды кальция и магния, являются только частично ионными. Кроме того, эффективные заряды на типических электроотрицательных атомах (кислород, сера) почти не превосходят 1, в то время как заряды металлических элементов (кальций, алюминий) могут быть заметно больше единицы. Это объясняется тем, что энергия присоединения двух электронов к кислороду и сере (сродство к электрону второго порядка) отрицательна. Расчеты показывают, что сродство к электрону второго порядка для кислорода равно —732, а для серы составляет —334 кДж/моль. Значит, ионы типа и 5 не существуют, и все оксиды, сульфиды, независимо от активности металлов, не относятся к ионным соединениям. Если двухзарядные анионы в действительности не -существуют, тем более нереальны многозарядные одноатомные отрицательные ионы. [c.84]


Смотреть страницы где упоминается термин Элементы металлические чистые: [c.364]    [c.36]    [c.17]    [c.282]    [c.129]    [c.53]    [c.331]    [c.393]    [c.372]   
Техника низких температур (1962) -- [ c.373 ]




ПОИСК







© 2025 chem21.info Реклама на сайте