Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция электрически заряженных частиц

    Коагуляция может происходить и в тех случаях, когда в растворе встречаются коллоидные частицы, несущие разноименные-электрические заряды, например при смешении отрицательно заряженного золя кремневой кислоты с положительно заряженным золем желатина и т. д. Этот прием успешно применяется для быстрого определения 5102 в различных объектах. [c.106]

    Пример. На коагуляцию гидрозоля иодида серебра из 1,0-10-2 3 сточных вод КБО потребовалось 8,0-IQ— м 10 %-го раствора Na l (плотность 1,07-10" кг/м"). Рассчитайте расход 28 %-го раствора А12(804)з (плотность 1,30-10 кг/м ) для извлечения Agi нз 100 указанных сточных вод, если электрический заряд коллоидных частиц иодида серебра в этих водах а) положительный б) отрицательный. [c.213]


    Нейтрализационная коагуляция наблюдается у зо-лей СО- слабо заряженными частицами, обладающими сравнительно низкими значениями фо-потенциа ла. В этом случае коагуляция происходит обычно у золей при снижении электрического заряда частиц из-за уменьшения вследствие тех или иных причин адсорбции потенциалопределяющих ионов. В результате уменьшения заряда электрические силы отталкивания между частицами ослабевают, частицы при сближении слипаются и выпадают в осадок  [c.290]

    На рис. ПО показано изменение концентрации золя сульфида мышьяка при прибавлении к нему золя гидроксида железа (П1). Опыт показывает, что наиболее полной взаимная коагуляция становится тогда, когда число разноименных электрических зарядов на частицах обоих коллоидов одинаково. [c.369]

    Характерная картина образования кристаллических агрегатов может наблюдаться при добавлении к раствору мелкокристаллического парафинистого продукта в углеводородном растворителе какого-нибудь осадителя, например кетона, дихлорэтана и др. При этом происходит следующее. При растворении продукта в бензоле или в бензине и последующем охлаждении образуется раствор, содержащий неагрегированные кристаллики парафина, относительно равномерно рассеянные по всей массе раствора при добавлении к раствору осадителя понижается растворимость находящихся в нем как твердых, так и жидких компонентов обрабатываемого продукта. Это приводит к выделению из раствора и адсорбции на поверхности кристалликов некоторого количества наиболее высокомолекулярных и малорастворимых жидких компонентов. Введение осадителя сопровождается, возможно, также и изменением электрического заряда частиц (кристаллов) парафина. В результате указанных явлений разрозненные кристаллики парафина начинают собираться сначала в хлопья, а затем в комки, т. е. происходит агрегация кристалликов, аналогичная коагуляции дисперсной фазы коллоидного раствора. На рис. 11 [c.74]

    Рассмотрены процессы агрегации тонкодисперсных частиц суспензии [212]. Указано, что под коагуляцией следует понимать непосредственное соединение тонкодисперсных частиц в агрегаты, происходящее, когда силы притяжения (силы Ван-дер-Ваальса) больше сил отталкивания, обусловленных одноименными электрическими зарядами частиц результирующие силы зависят от расстояния между частицами, в связи с чем коагуляция интенсифицируется с повышением концентрации частиц и перемешиванием суспензии. Отмечено, что под флокуляцией надлежит понимать соединение в агрегаты менее тонкодисперсных частиц после прибавления в суспензию высокомолекулярных полимеров с вытянутой молекулой и большим числом активных групп действие таких полимеров состоит в соединении отдельных частиц мостиками из молекул полимера получающиеся при этом агрегаты достаточно рыхлые и проницаемые для жидкости. [c.193]


    Коагуляции способствуют адсорбционные силы, согласующиеся с принципом минимума свободной энергии, а противодействуют — электростатические силы отталкивания одноименных электрических зарядов частиц дисперсной фазы, соответствующих -потенциалу. Рассмотрим с учетом этого влияние внешних факторов на устойчивость дисперсных систем. [c.281]

    Теперь мы имеем возможность рассмотреть влияние ряда факторов на процесс коагуляции аэрозолей в результате диффузии частиц. Их можно разде.пить на две группы. К первой относятся те факторы, которые влияют на вероятность столкновения между частицами, например, размер, распределение по размерам и распределение электрических зарядов частиц, а также температура и давление газа. Ко второй относятся форма и структура частиц и влияние адсорбированных на частицах паров, т. е. факторы, от которых зависит, слипаются ли диффундирующие частицы при столкновении или нет. Влияние электрических зарядов частиц и перемешивания на коагуляцию, а также акустическая коагуляция для удобства будут рассмотрены отдельно. [c.151]

    Наряду с концентрационной коагуляцией различают также нейтрализационную коагуляцию электролитами. Сущность ее заключается в том, что прибавление электролита снижает величину электрического заряда частицы (ядро). Уменьшение заряда может быть связано с химическим взаимодействием противоионов с ионами, адсорбированными на поверхности ядра, в результате которого образуются малодиссоциированные соединения. В этом случае также должно проявляться различие во влиянии одно-, двух- и трехзарядных противоионов, так как, чем больший заряд несет противоион, тем в большей степени он будет снижать заряд ядра. [c.420]

    Механизм действия моющих присадок объясняют их адсорбцией на поверхности нерастворимых в масле частиц. В результате на каждой частице образуется оболочка из обращенных в объем масла углеводородных радикалов. Она препятствует коагуляции частиц загрязнений, их соприкосновению друг с другом. Полярные молекулы присадок образуют двойной электрический слой, придающий одноименные заряды частицам, на которых они адсорбировались. Благодаря этому частицы отталкиваются и вероятность их объединения в крупные агрегаты уменьшается. [c.127]

    На частицы коллоидов действуют диффузионные силы, н частицы стремятся равномерно распределяться во всем объеме жидкой фазы. Наличие у частиц электрических зарядов одного знака вызывает их взаимное отталкивание. Одновременно между коллоидными частицами имеются молекулярные силы взаимного притяжения, которые проявляются лишь при небольших расстояниях между частицами. При снижении электрического заряда частиц, т. е. при уменьшении -потенциала, силы отталкивания уменьшаются и становится возможным слипание частиц — процесс коагуляции коллоида. Силы взаимного притяжения между коллоидными частицами начинают преобладать над электрическими силами отталкивания при -потенциале системы менее 0,03 В. При -потенциале, равном нулю, коагуляция проходит с максимальной интенсивностью, состояние коллоидной системы в этом случае носит название изо-электрического состояния, а величина pH называется изоэлектрической точкой системы. [c.127]

    Коагуляция электролитами применяется для разрушения эмульсий, стабилизированных электрическим зарядом частиц. Для таких эмульсий может применяться также разделение методом электрофореза. [c.402]

    Коагуляция чаще всего происходит в результате столкновения частиц под влиянием гидродинамических сил и броуновского движения иногда она наблюдается при воздействии на аэрозоль звуковых волн и электрических зарядов. Частицы пыли, выходящие из технологического агрегата с определенной крупностью, проходя по трубопроводам и через аппараты предварительной очистки, в ряде случаев существенно укрупняются, что положительно сказывается на работе фильтра. Этим свойством в значительной мере обладают окислы металлов (свинца, цинка, меди, железа), сажа и некоторые другие вещества. Подробно вопросы коагуляции взвешенных частиц рассмотрены в работе [108]. [c.16]

    Для предохранения латекса от самопроизвольной коагуляции производят его консервирование. В результате жизнедеятельности микроорганизмов, содержащихся в латексе, и действия ферментативных процессов, латекс может самопроизвольно коагулировать. Причина самопроизвольной коагуляции еще не установлена. В литературе имеется указание, что, по-видимому, здесь играет роль кислая реакция образующихся продуктов, которая приводит к понижению pH среды и, следовательно, к нейтрализации электрического заряда частиц каучука за счет накапливающихся водородных ионов, заряженных положительно. [c.151]

    При понижении электрического заряда частиц (главным образом величины -потенциала их) до некоторого предела начинают превалировать силы межмолекулярного притяжения, наблюдается слипание сталкивающихся друг с другом частиц, т. е. коагуляция их. Та наибольшая величина -потенциала, при которой коагуляция протекает с заметной скоростью, называется критической. Для многих золей она составляет 25—30 мв. При значениях -потенциала выше 30 мв золи практически устойчивы. Когда же -потенциал становится ниже критического, золи становятся неустойчивыми и коагулируют с возрастающей быстротой. В изоэлектрическом состоянии коагуляция золя протекает с предельно большой скоростью. [c.316]


    На частицы коллоидов действуют диффузионные силы, и частицы стремятся равномерно распределяться во всем объеме жидкой фазы. Наличие у частиц электрических зарядов одного знака вызывает их взаимное отталкивание. Одновременно между коллоидными частицами имеются молекулярные силы взаимного притяжения, которые проявляются лишь при небольших расстояниях между частицами. При снижении электрического заряда частиц, т. е. при уменьшении -потенциала, силы отталкивания уменьшаются и становится возможным процесс слипания частиц — процесс коагуляции коллоида. Силы взаимного притяжения между коллоидными частицами начинают преобладать над электрическими силами отталкивания при -потенциале системы менее [c.117]

    Скорость дрейфа субмикронных частиц практически не зависит от их размера и имеет порядок нескольких см/с, с увеличением размера на порядок (10 мкм) заряд частиц становится пропорциональным квадрату радиуса. Поэтому целесообразна двухступенчатая схема предварительная акустическая коагуляция субмикронных частиц и окончательная электрическая очистка. Такой подход был развит в работах Таганрогского радиотехнического института (Тимошенко В. И. и др.). [c.135]

    Параллелизм между влиянием электролитов на устойчивость гидрозолей и их влиянием на -потенциал наиболее отчетливо выражен в случае многовалентных и органических ионов, которые могут перезаряжать межфазную поверхность. В этом случае с повышением концентрации электролита устойчивость коллоида резко уменьшается и наступает быстрая коагуляция. Однако при еще более высоких концентрациях достигается вторая область устойчивости, связанная с тем, что вследствие перезарядки поверхности коллоид снова приобретает электрический заряд (но уже противоположного знака), который его стабилизирует. При достаточно высокой концентрации электролита -потенциал в любом случае уменьшается до нуля, и устойчивость коллоида пропадает. Подобное поведение лиофобных коллоидов подтверждает то решающее значение, которое имеют для их устойчивости электрические свойства поверхности частиц. [c.197]

    Если в дисперсную систему вводить большое количество электролита, то произойдет увеличение количества противоионов в адсорбционном слое коллоидных частиц. Это повлечет за собой уменьшение среднего электрического заряда коллоидных частиц и соответствующее снижение -потенциала системы. В итоге взаимное отталкивание частиц ослабеет и увеличится вероятность их столкновений. А столкновение коллоидных частиц, согласно принципу минимума свободной энергии, приводит к их слипанию (слиянию). В результате будет происходить их коагуляция (коалесценция), за которой может последовать оседание укрупнившихся частиц — седиментация. [c.212]

    Объясните, почему электрические заряды, адсорбировавшиеся на поверхности частиц золя, предотвращают коагуляцию и в чем причина подобного же действия ПАВ. [c.304]

    В коллоидах неорганических веществ возможна и кинетическая (нетермодинамическая) стабилизация диспергированных частиц за счет, например, электростатического заряжения частиц в ходе гидролитических процессов и образования ионной шубы из электрических зарядов вокруг частиц. Наличие такой шубы препятствует столкновению и, следовательно, коагуляции частиц. Так, экспериментально известно, что искусственно приготовленные золи (коллоиды) сильно диспергированного золота могут оставаться стабильными в течение сотен лет. В то же время удаление с коллоидов ионной шубы путем, например, добавления в жидкую фазу [c.280]

    Вспомогательные операции в ряде производств очень часто представляют собою коллоидные процессы. Например, выделение воды из нефти на нефтеперерабатывающих заводах, разрушение эмульсий, образующихся в химических производствах при промывке того или иного жидкого продукта водой, приготовление различных эмульсий в текстильном, кожевенном и ряде других производств. Типичными коллоидными процессами являются водо-и газоочистка. Водоочистка сводится к коагуляции взвещенных в воде мельчайших частиц электролитами или к извлечению из воды примесей путем адсорбции. Один из современных способов газоочистки заключается в придании содержащимся в газе или дыме твердым или жидким частицам достаточно большого электрического заряда и затем в отложении заряженных частиц на противоположно заряженном электроде. Более подробно такой способ газоочистки рассмотрен в гл. XI. [c.32]

    Устойчивость КОЛЛОИДНОЙ системы может быть утрачена в результате нейтрализации электрического заряда частиц дисперсной фазы. Эта нейтрализация может быть достигнута при введении в коллоидную систему электролитов. Ионы введенного электролита нейтрализуют заряды противоположного знака, находящиеся иа поверхности коллоидной частицы. Нейтрализующее действие ионов усиливается с увеличением заряда ионов, В результате происшед-щсй нейтрализации зарядов коллоидные частицы снова получают способность коагулировать. Таким образом введение в коллоидную систему электролита устраняет препятствие коагуляции, которое 0бус.)10влен0 электрическими зарядами частиц дисперсной фазы. [c.195]

    Влияние заряда на скорость коагуляции частиц очень сложно, и экспериментальные данные по этому вопросу противоречивы. Если все частицы несут заряды одинакового знака, это замедляет коагуляцию, тогда как разноименные заряды, возникающие на частицах в сильном электрическом поле [299], ускоряют агломерацию. Методы расчета с учетом электрических зарядов частиц можно найти в литературе [315]. Влияние температуры, давления и вязкости на скорость агломерации может быть рассчитана из изменения константы коагуляции х при изменении температуры, вязкости и поправочного коэффициента Каннингхема (который представляет собой сложную зависимость длины среднего свободного пробега молекул газа от температуры, давления и вязкости), т. е. (4СА7 /3[х) при 5 = 2. [c.519]

    Потеряв электрические заряды, -частицы механических примесей перестают взаимно отталкиваться и начинают слипаться (коа рулировать). В результате коагуляции они укрупняются и оседают на дно резервуара (отстойник, мешалка и т. п.). [c.78]

    Находящиеся в отработанном масле коллоидные частицы имеют ялектрические заряды, препятствующие их коагуляции. Чтобы произошла коагуляция, эти частицы должны приблизиться на расстояние, меньшее радиуса сферы притяжения, что возможно лишь в том случае, если частицы потеряют свои электрические заряды. Это и достигается введением раствора электролита, противоположно заряженные ионы которого нейтрализуют заряды дисперсной фазы. Потеряв электрические заряды, частицы механических примесей перестают взаимно отталкиваться и начинают коагулироваться. В результате коагуляции получается укрупнение частиц и оседание их на дно вместе с электролитом. [c.96]

    Зависимость относительной устойчивости коллоидных растворов АззЗз, Ре(ОН)д и т. п. веществ от наличия электрических зарядов частиц подтверждается тем фактом, что всякий раз, как эти частицы почему-либо теряют свои заряды, они обычно сейчас же соединяются в более крупные агрегаты, выпадающие в виде осадка. Этот процесс, называемый коагуляцией коллоидных растворов, происходит, например, при прибавленин к ним каких-либо электролитов. Познакоми.мся с явлением коагуляции на опыте. [c.121]

    Агрегативная устойчивость выражает собой способность кол лоидной системы сохранять свою стедедь дисперсности. Arpera тивная устойчивость (в отнощении коагуляции) обусловлена на личием у частиц дисперсной фазы электрического заряда и соль ватной (в частном случае — гидратной) оболочки. В сравнительно устойчивых коллоидных системах частицы дисперсной фазы, в ре зультате взаимодействия с молекулами или ионами окружающей среды, обычно приобретают электрические заряды, различные по величине, но одинаковые по знаку для всех частиц дисперсной фазы в данной системе. Это легко обнаружить при действии [c.509]

    В пробе сточных вод объемом 6,0-10 после добавления к ней 2,3-10-3 3 26-% го раствора Na l (плотность 1200 кг/м ) появляются хлопья. Определите порог коагуляции рассматриваемого золя по отношению к Na I Рассчитайте расход 26 %-го раствора Alj(804)3 (плотность 1300 кг/м ) на подготовку этих сточных вод к очистка от коллоидных частиц, если знак пх электрических зарядов а) положительный б) отрицательный. [c.218]

    Коагуляцию могут вызывать все те факторы, которые способствуют понижению величины С-потенциала частиц и десольватации (дегидратации) ионов диффузного слоя, что приводит к сжатию диффузной- части двойного слоя и к понижению механической прочности сольватных оболочек ионов диффузного слоя, разъединяющих коллоидные частицы. К таким факторам относятся повышение температуры, добавка электролитов, прибавление к золю другого золя с противоположным по знаку электрическим зарядом частиц (взаимная реагуляция). [c.247]

    В гидрофобных золях прибавление электролита в достаточных количествах вызывает нейтрализацию электрического заряда частиц. Происходит эта нейтрализация таким образом, что ионы противоположного частице заряда из прибавленного электролита замещают противоионы частицы, образуя малодиссо-пиированные или даже нерастворимые соединения со стабилизирующими ионами частицы. Определяющую роль играет в процессе электролитной коагуляции и увеличение ионной силы раствора, приводящее к более плотному обволакиванию заряженной коллоидной частицы электростатически взаимодействующими с нею ионами противоположного знака, т. е. опять-таки к нейтрализации ее заряда. [c.151]

    Коагуляция коллоидных суспензий. Независимо от происхождения электрический заряд играет важную роль в удержании коллоидных частиц в растворе. Одноименно заряженные частицы электростатически отталкиваются, так что существующие между ними силы когезии не могут проявиться. При снятии электрических зарядов частиц любым способом коллоид коагулирует. Это происходит, например, в процессе электрофореза на электродах. Наблюдаемое явление особенно красиво в случае красного золя золота, который при добавлении Na l становится фиолетовым, затем синим и, наконец, перед коагуляцией — зеленым. Коллоидные частицы адсорбируют на своей поверхности ионы электролита противоположного знака, нейтрализуя таким образом свои заряды. Это вытекает, например, из следующих данных, которые показывают количества некоторых электролитов (в ммоль1л), необходимых для осаждения золя сульфида мышьяка (содержащего 1,80 г/л AsgSg)  [c.550]

    Как известно, одним из факторов, препятствующих сцеплению коллэидных частиц друг с другом, является наличие у них одноименных электрических зарядов, между которыми действуют силы электростатического отталкивания. Заряды эти возникают вследствие адсорбции частицами ионов из раствора и могут быть нейтрализованы в результате адсорбции ионов противоположного знака. Вследствие этого процесс коагуляции коллоидных растворов может быть вызван прибавлением какого-либо электролита, противоположно заряженные ионы которого, адсорбируясь на поверхности частиц, нейтрализуют заряд коллоидных частиц и таким образом дают им возможность сцепляться между собой. При этом коагулирующая концентрация электролита (т. е. минимальная концентрация его, требуемая для коагуляции данного коллоидного раствора) увеличивается с уменьшением валентности того иона, заряд которого противоположен заряду коллоидных частиц. Так, в случае золя AS2S2, частицы которого заряжены отрицательно, коагуляция вызывается адсорбцией катионов, причем коагулирующие концентрации А1з+, Ва2+- и К+-ионов относятся как 1 20 1000. [c.105]

    Вьпие ( 18 этого раздела) было указано, что все гетерогенные дпсперсиыс системы являются неустойчивыми. В агрегативном отношении особенно неустойчивыми являются тонкодисперсные, т. е. коллоидные системы. Одиако на практике встречаются относительные устойчивые коллоидные системы, что обусловлено наличием электрического заряда у коллоидных частиц. Будучи одноименно заряжены, коллоидные частицы при сближении отталкиваются друг от друга и, следовательно, коагуляция в такой коллоидной системе не происходит. [c.194]

    Сопоставляя соотношения (VI. 116), (VI. 117) и (VI. 119), можно сделать вывод, что в соответствии с теорией ДЛФО нейтрализационная коагуляция более характерна для систем с частицами, обладающими малым электрическим потенциалом. Особенно сказывается на коагуляции в таких системах специфическая адсорбция ионов добавляемого электролита, имеющих заряд, одноименный е зарядом противоионов двойного электрического слоя. Эти ионы, находясь в адсорбционном слое, резко снижают потенциал срд (VI. 117)—происходит нейтрализация фо-потенциала уже в адсорбционном слое. Так как при специфической адсорбции ионов возможна перезарядка поверхности частиц, то для нейтрализаци онной коагуляции характерна область между минимальной и максимальной концентрацией электролита. При введении электролита в количестве, превышающем некоторое максимальное значение, дисперсная система может перейти во вторую область устойчивости, в которой частицы будут иметь заряд, противоположный заряду частиц в первой области устойчивости. [c.335]

    Современные взгляды на эмульсии вообще, и на битумные эмульсии - в частности, базируются на теории адсорбционной оболочки, выдвинутой в 1913 году Банкрофтом. Подробно эта теория рассмотрена в упоминавшемся раннее труде Клейтона , мы же лишь кратко остановимся на-основных ее положениях.Учение об эмульсиях, созданное Банкрофтом, основано на более ранней теории поверхностного натяжения Доннана - в той ее части, где утверждается, что изменения поверхностного натяжения на поверхности раздела масло - вода протекает параллельно с изменением электрического потенциала... и возможно здесь играет роль избирательная адсорбция ионов . В понимании Доннана и его последователей эмульгированные шарики масла окружены очень вязкой или даже желатинообразной оболочкой , которая препятствует их слиянию. Эти оболочки появляются благодаря адсорбции, которая происходит при понижении поверхностного натяжения на границе масло - вода, т.е. эмульгирование тесно связано с низким поверхностным натяжением между маслом и эмульгатором . Льюис, Эллис и другие исследователи расширили теорию поверхностного натяжения, связав ее с адсорбцией, электрическим зарядом и коагуляцией. Пикеринг в 1910 году важнейшим фактором эмульгирования (помимо высокой вязкости и низкого поверхностного натяжения) назвал присутствие тонко раздробленных, нерастворимых в дисперсионной среде частиц, которые обволаки- [c.14]

    Закономерности коагуляции золей Agi, содержащих иеионогенные поверхностно-активные вещества, свидетельствуют о том, что высокая. стабильность систем в этом случае в основном обусловлена силами неэлектростатической природы, хотя и в присутствии неионогенного стабилизатора коллоидные частицы имеют электрический заряд. [c.299]

    Явление взаимной коагуляции или гетерокоагуляции коллоидов, наблюдавшееся еще Пиктоном и Линдером в 1897 г., объясняли действием противоположных зарядов частиц дисперсной фазы обоих,золеиГ"в рё ультате чего происходит слипание частиц. При этом считали, что для полной коагуляции необходимо, чтобы золи были взяты в таком количественном соотношении, которое обеспечивало бы более или менее полную нейтралнаапию заряда частиц. Однако последующие исследования установили, что взаимная коагуляция коллоидных систем может наблюдаться и тогда, когда частицы обоих золей несут электрический заряд одного и того же знака. [c.307]


Смотреть страницы где упоминается термин Коагуляция электрически заряженных частиц: [c.496]    [c.464]    [c.213]   
Смотреть главы в:

Аэрозоли-пыли, дымы и туманы -> Коагуляция электрически заряженных частиц

Аэрозоли - пыли, дымы и туманы Изд.2 -> Коагуляция электрически заряженных частиц




ПОИСК





Смотрите так же термины и статьи:

Заряд частицы ВМС

Заряд электрический

Заряд электрический частицы

Коагуляция

Тепловая коагуляция электрически заряженных частиц и рассеивание аэрозолей

Частицы заряженные

Электрическая коагуляция



© 2024 chem21.info Реклама на сайте