Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диспергирование стабилизация

    В результате солюбилизирующего действия возможно диспергирование твердых продуктов, находящихся в масле, и в конечном итоге их стабилизация, т. е. удерживание во взвешенном состоянии. [c.215]

    Известно, что стабилизация платины на поверхности носителя может сопровождаться взаимодействием металла с кислотными центрами носителя, причем платина играет роль донора электронов [66]. Подавление кислотных центров в присутствии натрия должно приводить к уменьшению взаимодействия платины с носителем и увеличению электронной плотности на атомах платины. Результатом ослабления взаимодействия металл — носитель является также облегчение миграции диспергированного [c.48]


    Экспериментально установлено, что коллоидно-диспергированные вещества в нефти являются одним из основных факторов стабилизации нефтяных эмульсий. Метод ультрацентрифугирования нефти весьма ценен тем, что позволяет выделить диспергированные вещества в неизменном (первоначальном) состоянии без воздействия на них каких-либо растворителей или реагентов. [c.29]

    Спекание может быть замедлено путем диспергирования частиц активной фазы на развитой поверхности другого тугоплавкого инертного вещества (акция нанесения) или путем разделения их тугоплавкими блоками (стабилизация). Но спекание последних на практике не может быть проконтролировано. Миграция компонентов катализатора облегчается, если они растворимы в реакционном потоке или могут образовывать раствор в самом катализаторе. Например, некоторые переходные металлы могут переноситься в виде летучих карбонилов, галогенидов и окислов, многие другие — нерастворимые окислы и соли имеют достаточную растворимость в жидкостях (особенно в полимолекулярных слоях воды) или стабильны в виде газообразных гидратов. Эти свойства ускоряют спекание кристаллитов активной фазы. Особенно опасно указанное явление потому, что оно может произойти при малых парциальных давлениях случайных примесей, вполне достаточных для воздействия на рост кристалла и для движения вещества вдоль температурных градиентов, хотя не может быть причиной их выноса из реактора [1]. Наконец, поверхность может покрываться посторонними загрязнениями (пыль, ржавчина) или блокироваться такими продуктами побочных реакций, как жидкие полимеры или твердый кокс . Если вследствие этого изменяется распределение объема пор по величинам их радиусов, а скорость реакции определяется диффузией, то можно ожидать ухудшения селективности или активности. [c.18]

    Отсюда следует, что поверхностная активность ПАВ определяет нх способность понижать поверхностное натяжение, вызывать эмульгирование, пенообразование, диспергирование и стабилизацию, смачивание и т. д. [c.293]

    Слабое эмульгирование может быть получено с любым ПАВ, т. е. с любым соединением, которое понижает поверхностное натяжение между двумя жидкостями. Последнее связано с адсорбцией ПАВ на межфазной поверхности и влияет как на легкость диспергирования при получении эмульсии, так и на скорость разрушения жидкой пленки между каплями. Согласно некоторым взглядам, существенным фактором стабилизации является эластичность пленки. Ниже изложена хорошо известная теория этого явления Марангони и Гиббса .  [c.84]


    Создавая оптимальные условия для смачивания и диспергирования и отдельно для стабилизации дисперсий раздельно во времени, а частой в разных аппаратах, удается увеличить в несколько раз производительность и снизить энергозатраты на диспергирование [69]. Для смачивания и диспергирования используют разбавленные слабоструктурированные низковязкие растворы олигомеров, обладающие ньютоновским течением и расклинивающим действием. Для этого берут часть (0,25...0,6) [c.110]

    Эмульсии [1—5]. Эмульсии — системы из двух жидких фаз, одна из которых дисперсная, или прерывная, а другая фаза не- прерывная, называемая дисперсионной средой. Эмульсии распадаются на два класса. Первый класс — весьма разреженные эмульсии в виде мельчайших капелек одной жидкости, например масла, взвешенных в другой, например в воде. В стабилизации этих эмульсий главную роль играют электрические заряды на поверхности эмульгированной жидкости состояние и свойства поверхностных пленок оказывают меньшее влияние. Эмульсии этого класса приближаются к лиофобным коллоидным системам. Эмульсии второго класса более распространены. В них устойчивость определяется главным образом природой межфазной поверхностной пленки, отделяющей дисперсную фазу от дисперсионной среды. Эту пленку обычно образует третье вещество, отличающееся от обеих объемных фаз и легко растворимое в одной из них. Одна из главных функций этой пленки — понижение межфазного натяжения за счет увеличения адгезии между обеими фазами и, следовательно, уменьшение работы образования поверхности раздела при диспергировании. [c.78]

    Таким образом, снижение поверхностного натяжения на границе раздела фаз приводит к стабилизации дисперсных систем и даже диспергированию макроскопических фаз. Один из способов уменьшения поверхностного натяжения — это введение в систему небольшого количества ПАВ. [c.280]

    В коллоидах неорганических веществ возможна и кинетическая (нетермодинамическая) стабилизация диспергированных частиц за счет, например, электростатического заряжения частиц в ходе гидролитических процессов и образования ионной шубы из электрических зарядов вокруг частиц. Наличие такой шубы препятствует столкновению и, следовательно, коагуляции частиц. Так, экспериментально известно, что искусственно приготовленные золи (коллоиды) сильно диспергированного золота могут оставаться стабильными в течение сотен лет. В то же время удаление с коллоидов ионной шубы путем, например, добавления в жидкую фазу [c.280]

    Следует иметь в виду, что в некоторых случаях дисперсные системы могут образовываться путем самопроизвольного диспергирования дисперсной фазы в дисперсионной среде. Такие системы являются термодинамически равновесными и не требуют стабилизации их называют лиофильными коллоидными системами. [c.80]

    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]

    При суспензионной полимеризации (полимеризации в суспензии) мономер находится в виде капель, диспергированных в воде или другой жидкости. В результате реакции образуются полимерные гранулы размером от 10 до 10 м. Недостаток метода — необходимость стабилизации суспензии и отмывки полимеров от стабилизаторов. [c.355]

    Явления, связанные с особенностями поверхностей раздела, называются поверхностными явлениями. Как мы видели, структурирование и разрушение коллоидных систем, а также их стабилизация — поверхностные явления. С поверхностными явлениями связаны процессы получения коллоидных систем — диспергирование [c.65]

    В отличие от лиофобных существует класс дисперсных систем, способных возникать в результате самопроизвольного (т. е. без затраты подводимой извне механической работы) диспергирования макроскопической фазы. Такие дисперсные системы термодинамически равновесны и не нуждаются в дополнительной стабилизации их называют лиофильными. Подробно закономерности образования и свойства лиофильных дисперсных систем будут рассмотрены в гл. УП1. [c.112]


    Данная глава касается преимущественно образования лиофобных дисперсных систем при этом предполагается, что их стабилизация тем или иным путем обеспечена. Наряду с изложением основ термодинамики дисперсных систем наибольшее внимание здесь уделено теории конденсационного образования таких систем в процессах выделения новой фазы из исходной метастабильной системы. Основные закономерности диспергирования рассматриваются преимущественно в заключительной гл. XI, посвященной физико-химической механике. [c.112]

    В качестве добавок, обладающих стабилизирующим действием, испытывали такие органические соединения, которые, будучи достаточно диспергированными в водных растворах, образуют гидрофобные пленки. Были изучены бензойная, антраниловая, оксибензойная и олеиновая кислоты, тиокрезол, а также различные мыла и среди них простое натровое мыло. В последнем случае при стабилизации медных порошков коррозионная стойкость металла повышалась в 50—70 раз по сравнению с нестабилизированной порошковой медью. Было показано, что для гидрофобизации поверхности частиц металла требуется вполне "определенная концентрация мыла, при достижении которой стабилизирующее действие пленки проявляется наиболее полно. Опыт показал, что расход стабилизатора весьма незначителен, во всех случаях он не превышал 0,01 %  [c.474]

    Процесс эмульгирования состоит из собственно диспергирования, т. е. образования капелек дисперсной фазы в дисперсионной среде и их стабилизации в результате адсорбции на поверхности эмульгатора. Процесс гомогенизации всегда заключается в образовании из дисперсной фазы тонких цилиндриков, которые весьма неустойчивы и легко распадаются на ряд капелек. Как известно из молекулярной физики, цилиндрик жидкости начинает распадаться на капельки, когда его длина становится больше окружности его сечения. [c.378]

    ПАВ — это вещества с асимметричной структурой, в которых молекулы состоят из одной или нескольких гидрофильных групп и содержат одну или несколько гидрофобных радикалов. Гидрофильная группа — активная полярная составляющая молекулы ПАВ — обладает ненасыщенной вторичной валентностью и на границе раздела нефть — вода погружается в водную фазу. Гидрофобная группа (радикал) — инактнвная неполярная составляющая молекулы ПАВ, не имеет валентности и тяготеет к нефтяной (масляной) фазе. Ее часто называют олеофильной группой. Она представляет собой цепочку углеводородных радикалов. Такая структура молекул веществ, называемая дифильной, обуславливает ее поверхностную (адсорбционную) активность, т. е. способность вещества диффундировать через объем фазы и концентрироваться на поверхностях раздела фаз таким образом, что полярная (гидрофильная) часть молекулы, имеющая родственную природу с полярной фазой (например, водой), растворяется в ней, а неполярная (олеофильная) цепочка ориентируется в сторону менее полярной фазы, например нефти или керосина. ПАВ адсорбируются и на твердой поверхности, изменяя при этом ее молекулярно-поверхностные свойства. В результате адсорбции ПАВ происходит диспергирование гетерогенных систем образование защитной, более гидрофобной (или гидрофильной) по сравнению с первоначальной, пленки стабилизация (дестабилизация) дисперсной среды. [c.66]

    Ирестно. что процесс образования эмульсий [2, 3] складывается з двух стадий первая собственно диспергирование, т. е. образование капелек дисперсной фазы в дисперсионной среде, и вторая — стабилизация капелек в результате адсорбции на их поверхности присутствующих в системе эмульгаторов. [c.68]

    В дисперсной системе из нефти и воды, образовавшейся в результате механических воздействий, в дальнейпшм недостаточная турбулнзация потока, особенно полностью разгазированной нефти, может привести к началу образования защитных слоев на каплях диспергированной воды, т. е. ко второй стадии образования эмульсии, — ее стабилизации. В статических условиях, например при закачке нефти в резервуары, создаются все условия для завершения этого процесса. [c.68]

    Пены могут иметь жидкую и твердую дисперсионные среды. Устойчивость, стабилизация и разрушение имеют важное практическое значение для пен с жидкой дисперсионной средой. Как для всех дисперсных систем с такой средой, для пен характерны термодинамические и кинетические факторы устойчивости. Однако в отличие от эмульсий пены, как и лиозоли, нельзя получить путем самопроизвольного диспергирования, так как на границе с газом поверхностное натяжение не может уменьшиться до необходимого значения. По этой же причине пена не может долго существовать без специального стабилизатора (пенообразователя). Только в разбавленных газовых эмульсиях, особенно высокодисперсных, могут какое-то время находиться пузырьки газа, но при соприкосновении они практически мгновенно коалесцнруют. [c.349]

    Механизм действия моющих присадок многообразен и зависит от их свойств в объеме масла и на поверхности металла. Важными составляющими действия моющих присадок в объеме масла являются пептизация (диспергирование продуктов уплотнения), солюбилизация (поглощение углеродистых образований мицеллами присадок) и стабилизация суспензии твердых частиц (предотвращение их слипания и осал<дения). К поиерхпостному действию присадок относят понижение адгезионного взаимодействия частиц нагаров с металлическими поверхностями, некоторые электрические и другие эффекты. Эффективность щзисадок повышается при способности их тормозить процессы окисления углеводородов масел и нейтрализовать образующиеся кислоты. Существенны также концентрация присадок и состав масел. [c.307]

    Диспергирование сажи в углеводородах является слож-][ым и недостаточно изученным ироцессом [1, 2]. В связи с развитием производства стереорегулярных каучуков исследование процессов диспергирования сажи в углеводородах и механизма стабилизации диаперсии приобретает значительный интерес для промышленности СК. [c.209]

    Эмульсионная полимеризация (полимеризация в эмульсии) заключается в полимеризации мономера, диспергированного в воде. Для стабилизации эмульсии в среду вводят поверхностноактивные вещества. Достоинство способа — легкость отвода теплоты, возможность получения полимеров с большой молекулярной массой и высокая скорость реакции, недостаток — необходимость отмывки полимера от эмульгатора. Способ широко применяется в промышленности для получения каучуков, полистирола, поливинилхлорида, поливиннлацетата, полиметилакрила-та и др. [c.355]

    Структурно-механическая стабилизация — надежный фактор устойчивости коллоидов и находит широкое производственное применение. В качестве примера можно указать на стабилизацию суспензий минеральных вяжущих строительных материалов (цемента, извести, гипса) в процессе их гидратационнйго твердения—стабилизацию, осуществляемую различными поверхностно-активными веществами лигносульфонатами кальция (пластификатор ССБ), олеиновой кислотой и органическими соединениями типа полуколлоидов. Небольшие добавки этих веществ содействуют адсорбционному и химическому диспергированию при гидратации и гидролизе твердых частиц (см. гл. V) и изменяют кристаллическую структуру (адсорбционное модифицирование). Так, например, в трехкальциевом алюминате ЗСаО-АЬОз (составная активная часть цемента) происходит изменение от правильных гексагональных табличек до ните- и палочкообразных частиц, тонких иголочек. В результате в системе накапливается коллоидная фракция, резко возрастает скорость гид- [c.128]

    По характеру молекулярных взаимодействий на границе раздела фаз все дисперсные системы могут быть разделены на две большие группы. Это, с одной стороны, лиофильные системы, для которых характерна высокая степень родственности дисперсной фазы и дисперсионной среды и соответственно компенсирован-ности связей на границе раздела — сглаженность границы такие коллоидные системы, например критические эмульсии, могут образовываться самопроизвольно и обнаруживают полную термодинамическую устойчивость как относительно агрегирования, в макрофазы, так и относительно диспергирования до молекулярных размеров частиц. С другой стороны, это разнообразные лиофобные — коллоидно- и грубодисперсные системы, в которых дисперсная фаза и дисперсионная среда менее родственны и различие граничащих фаз по их химическому составу и строению проявляется в существенной некомпенсированности поверхностных сил (в избытке энергии) на межфазной границе. Такие системы термодинамически неустойчивы и требуют специальной стабилизации. Сюда относятся все аэрозоли, пены, многочисленные эмульсии, золи и т. д. Между теми и другими системами нельзя провести четкого разделения, поэтому представляется возможным рассматривачь широкий спектр промежуточных состояний. [c.7]

    В отличие от лиофобных существует класс дисперсных систем, способных возникать в результате сгамопроизвольного (т. е. без затраты подводимой извне механической работы) диспергирования макроскопической фазы. Такие дасперсные системы термодинамически равновесны и не нуждаются в дополнительной стабилизации их называют лиофилы<ыми. [c.135]

    При штуцировании и диспергировании на насосах эти примеси образуют в сточных водах труднорасслаиваемые дисперсные системы, поскольку плотность агломератов твердых примесей и нефтепродуктов близка к плотности вод. Избыточное количество деэмульгаторов в воде способствует образованию и стабилизации тонкодисперсной взвеси. [c.345]

    Регулирование активности глин в хорошо промытых высокопроницаемых зонах позволит добиться набухания и диспергирования глин, чтобы затампонировать эти зоны и перераспределить поток закачиваемого агента в менее выработанные участки коллектора. В призабойной зоне скважин набухание глинистой составляющей коллектора ифает отрицательную роль, снижая добычу нефти, что требует стабилизации глин. [c.42]

    На. рис. 85 приведены типичные кривые распределения дисперсности эмульсии 8%-ной бентонитовой сусперзии, содержащей 10% нефти, стабилизированной 0,25% газойлевого контакта, на основании измерения 1000 глобул. Более 90% глобул имеют размеры в пределах 10—100 мк. При усилении стабилизации дисперсность возрастает. Лучшие эмульгаторы позволяют довести ее до 2 мк. По мере диспергирования улучшаются водоотдача и смазочные свойства растворов. [c.367]

    Эмульгаторами нефти в буровом растворе являются как реагенты<-так и сама глинистая фаза. По П. А. Ребиндеру, дз различных факторов стабилизации эмульсий первое место принадлежит механическому фактору — прочности поверхцостных слоев глобул [ 50]. Особое значение имеют поэтому твердые эмульгаторы — высокодисперсные глинистые частицы, сосредоточивающиеся на поверхностях раздела. Создаваемые ими структурированные адсорбционные слои обладают большой прочностью. Если глинистые частицы стабилизированы, то глобулы, защищенные ими, еще надежнее предохранены от агрегирования. Наряду с функцией эмульгатора, глинистый компонент в присутствии нефтяной фазы образует сопряженные суспензионно-эмульсионные структуры. Глобулы с покрывающими их глинистыми частицами становятся звеньями структурных цепей и соединяющими их узлами, что приводит к большей жесткости и прочности структурного каркаса. По этой причине эмульсионные растворы с малым содержанием твердой фазы сохраняют приемлемые структурно-механические свойства. Однако такое интенсифицирование структурообразования снижает глиноемкость растворов. Загущающее действие может оказать и увеличение добавки нефти, оптимум которой, влияющий на буримость, лежит в пределах 10—15%. Подобное загущение обычно устраняется разбавлением, но более эффективно введение понизителей вязкости или углещелочного реагента. С другой стороны УЩР, усиливая пептизацию глины и диспергирование нефтяных глобул, также в некоторых случаях может вызывать загущение. Преобладание того или другого эффекта зависит от условий. Так, если исключить влияние разбавления путем поддержания постоянной концентрации глины, возрастающие добавки УЩР приведут к загущению. [c.367]

    Впервые растворы на основе дизельного топлива и битума были предложены в 1919 г. Д. Сваном. Эти растворы требуют обработки реагентами-стабилизаторами и зачастую утяжеления. В качестве утяжелителей применяются барит, магнетит, гематит и карбонатные материалы (мел, измельченны[й известняк, мука из устричных панцирей и т. д.). Коркообразующим компонентом битумных растворов является высокоокисленный битум. Он же после стабилизации мылами служит структурообразующей фазой. Корректировка фильтрации достигается введением недостающих количеств битума и диспергированием его с помощью эмульгаторов. Вязкость раствора снижают разбавлением дизельным топливом, удалением эмульгированной воды, уменьшением содержания битума. Регулирование осуществляют с помощью ПАВ и отчасти окисленного битума. [c.377]

    Фирма Мобил рисерч по-иному подошла к проблеме стабилизации глинистых сланцев. Для того чтобы преодолеть температурные ограничения в использовании обработанных известью буровых растворов и уменьшить набухание и диспергирование глин, был разработан кальциевый буровой раствор с ПАВ. Агрегирование глин при помощи этого ПАВ усиливалось добавлением гипса. Фильтрацию регулировали путем добавки КМЦ. Если температура поднималась до уровня, при котором использование КМЦ становилось неэкономичным, концентрацию ионов кальция снижали и добавляли в раствор хлорид натрия. Система превращалась в натриевый раствор с ПАВ, фильтрацию его регулировали с помощью полиакрилатов. Водный раствор указанного ПАВ, смешанный с пеногаси-телем, продается с торговым знаком 0М8. Установлено, что ВМ5 является эффективной добавкой к буровым растворам, применяемым при высоких температурах. [c.64]

    Стабилизаторы-в-ва, используемые для предотвращения нежелательной К., к рая может приводить к расслаиванию реакц. смесей при гетерог. процессах напр., латексов при полимеризации), пищ., фармацевтич., лакокрасочных и др. композиций, ухудшению условий эксплуатации гидротранспортных суспензий и пульп и т. п. В качестве стабилизаторов применяют добавки разл. ПАВ (ионогенных и неионогенных), к-рыми м. б. как прир, в-ва (напр., желатина), так и синтетические напр., поливиниловый спирт). Причинами стабилизации м. б. образование на частицах адсорбц. слоев, оказывающих барьерное действие, или ослабление адгезии частиц в контакте вследствие вызываемого адсорбцией ПАВ снижения уд. межфазной энергии. В последнем случае возможно проявление не только стабилизирующего, но и пептизирующего действия ПАВ, т. е. облегчение диспергирования коагулята (самопроизвольного или, напр., при перемешивании). [c.413]


Смотреть страницы где упоминается термин Диспергирование стабилизация: [c.35]    [c.30]    [c.193]    [c.221]    [c.98]    [c.70]    [c.57]    [c.52]    [c.104]    [c.11]    [c.416]    [c.155]    [c.155]   
Крашение пластмасс (1980) -- [ c.88 ]

Крашение пластмасс (1980) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Диспергирование

Диспергирование — коллоидная стабилизация

Диспергирование, дефлоккуляция и стабилизация суспензий



© 2025 chem21.info Реклама на сайте