Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силы взаимодействия частиц электростатические

    На основании материала, изложенного в предыдущем разделе, можно представить себе, как при сближении двух одноименно заряженных коллоидных частиц будет изменяться энергия их взаимодействия, являющаяся результатом сложения, молекулярных сил притяжения и электростатических сил отталкивания. Для этого рассмотрим потенциальные кривые (рис. IX, 6 и IX, 7), характеризующие зависимость энергии взаимодействия двух сближающихся частиц (энергия отталкивания отложена вверх, а энергия притяжения — вниз от нуля) от расстояния Н между частицами. [c.278]


    Это особенно актуально при рассмотрении вопроса о ионных парах и сольватных оболочках ионов.) Ионные растворы с измеримыми концентрациями существуют только благодаря тому, что взаимодействия между ионами и молекулами растворителя достаточно сильны, чтобы преодолеть взаимодействие между ионами. В противном случае соль была бы нерастворима. При рассмотрении ионных систем мы, таким образом, сталкиваемся с так называемыми силами, действующими на далеких расстояниях, т. е. между сильно взаимодействующими частицами. Чтобы оценить величину этих взаимодействий, подсчитаем их, исходя из чрезвычайно простых, но полезных электростатических моделей. Из электростатической теории следует, что сила взаимодействия между двумя точечными зарядами 218 и на расстоянии г в вакууме равна [c.444]

    Степень протекания химических сольватационных процессов зависит от электронной структуры молекул и частиц компонентов растворителя и растворенного вещества, способности частиц к ком-плексообразованию, диссоциации, ассоциации, образованию ионных пар и т. д. При сольватационных близкодействующих взаимодействиях их энергия достигает 400 кДж/моль. К дальнодействующим силам взаимодействий относят электростатические взаимодействия между ионами, металлическую связь и силы Ван-дер-Ваальса. Молекулы растворителя ориентируются в структуры различной устойчивости вокруг растворенных частиц с образованием сольватных оболочек. Число частиц растворителя в первой сольватной оболочке определяют как координационное число сольватации (гидратации) Пс- Значение Пс в водных растворах достигает 6—8. [c.91]

    В заключение отметим, что при выполнении неравенства электростатическая сила взаимодействия частиц будет силой отталкивания. [c.316]

    Флокуляция дисперсных систем (рис. 1.17, б) в определенной степени объясняется соотношением сил молекулярного притяжения и электростатического отталкивания. Естественно, что силы взаимодействия частиц при их сближении очень быстро возрастают. Агрегатирование глобул дисперсной фазы в некоторых случаях является переходным к обращению фаз. [c.44]

    Общий ПОДХОД К задаче взаимодействия двух реагирующих частиц в рамках теории возмущений основан на разделении сил взаимодействия на электростатические и ковалентные [367], Энергия взаимодействия молекул донора (нуклеофила) К и акцептора (электрофила) 8 с образованием химической связи между атомами в положениях г я з этих молекул выражается суммой двух составляющих — электростатической и ковалентной . > [c.130]


    То обстоятельство, что электростатическая теория растворов, построенная на базе формулы (40), правильно выражает зависимость объемных и тепловых свойств концентрированных растворов от концентрации, говорит о том, что эта зависимость связана в основном с электростатическими силами. Дисперсионные и другие силы взаимодействия частиц раствора оказывают влияние лишь на первичную сольватацию и на свойства ионов в бесконечно разбавленных растворах. [c.26]

    Электростатическое взаимодействие не является единственной причиной гидратации — последняя может обусловливаться и химическими силами. Химическое взаимодействие является преобладающим в случае, если центральная частица — сильный комплексообразователь, т. е. ион с незаполненной электронной оболочкой. Для ионов, обладающих структурой инертного газа, преобладает кулоновая составляющая сил взаимодействия, зависящая от кристаллографического радиуса иона и его заряда [13]. [c.203]

    Изменение объема, теплоемкости и некоторых других свойств растворов электролитов с концентрацией связано в основном с электростатическими силами. Ковалентные связи, дисперсионные и другие силы взаимодействия частиц раствора оказывают влияние лишь на первичную сольватацию ионов и определяют количественно их свойства в бесконечно разбавленном растворе. [c.139]

    Диспергирование ингредиентов в полимере также осуществляется под действием внешних сил (напряжений сдвига, возникающих вследствие существования относительного движения в системе полимер — частица). В простейшем случае ингредиент (агломерат), введенный в полимер, можно представить состоящим из двух элементарных частиц. Для разрушения такого агломерата, во-первых, надо преодолеть силы взаимодействия частиц, природа которых может быть различна (адгезия, электростатическое притяжение и т. д.), и, во-вторых, частицы должны быть удалены друг от друга на расстояние, превышающее радиус сил взаимодействия (рис. 3). Для оценки величины напряжения сдвига, необходимого для разделения агломератов, можно воспользоваться формулой  [c.27]

    Исследование устойчивости дисперсии ПА в растворах различных электролитов проводили методом поточной ультрамикроскопии. При рН = 2 и рН = 3 в широком интервале концентраций КС1 (от 1-10 2 до 3-10 М) дисперсия ПА является агрегативно устойчивой. При концентрации 5-10 М при рН = 2 в системе наблюдается обратимая агрегация (степень агрегации ш = 1,7). Из расчетов энергии взаимодействия частиц по теории ДЛФО следует, что при концентрациях электролита 1 1, превышающих 1-10 моль/л, на всех расстояниях молекулярные силы преобладают над ионно-электростатическими. Таким образом, наблюдаемое отсутствие агрегации частиц вплоть до концентраций КС1 5-10 моль/л может быть объяснено тем, что реальная потенциальная яма не достигает достаточной глубины, необходимой для образования агрегатов. Это, очевидно, связано с существованием ГС воды у поверхности частиц ПА, что обусловливает возникновение структурной составляющей расклинивающего давления. [c.183]

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]


    Элементарный акт коагуляции в дисперсной системе происходит вследствие взаимодействия частиц в ближнем или дальнем минимуме потенциальной энергии, в которых силы межмолекулярного притяжения преобладают над силами электростатического отталкивания (см. рис. 1П.1). [c.71]

    При системном анализе процессы измельчения- смешения сыпучих материалов [4] определяются как процессы взаимодействия ансамбля измельчаемых и смешиваемых частиц различного сорта и различных размеров с несущей средой и между собой при наличии внешних воздействий на двух уровнях иерархии. На локальном (микро) уровне действуют внешние поверхностные и массовые силы и силы взаимодействия между несущей фазой и частицами (силы Архимеда, Стокса, Жуковского и Магнуса). При определенных свойствах обрабатываемых веществ и несущей среды возможны дополнительные электромагнитные силы. В результате этого в системе происходит перенос массы, импульса, энергии и заряда. Внешняя механическая энергия или энергия другого вида, превращенная в нее внутри системы, расходуется на работу против сил молекулярного сцепления и электростатического взаимодействия, преодоление сил взаимодействия внутри частицы, на накопление упругих деформаций, переходящих в пластические и во внутреннюю энергию. Частично энергия упругих деформаций создает в системе дефекты, микронапряжения и микротрещины. [c.113]

    В работе [108] рассмотрено определение сечения захвата для нейтральных проводящих сферических частиц, находящихся во внешнем электрическом поле напряженностью Е. Предполагалось, что большая частица закреплена, а меньшая приближается к ней с потоком жидкости, имеющим скорость v. Задача решалась с учетом только гидродинамического и электростатического взаимодействия частиц. Выражение для силы гидродинамического взаимодействия частиц взято из работ П09—П2], где рассмотрено сближение пары сферических частиц произвольного радиуса. Задача решалась численно, отношение радиусов частиц варьировалось в пределах 100—2. Если плоскость движения частиц совпадает с плоскостью поля, авторы предлагают аппроксимировать сечение захвата следующим выражением [c.88]

    Если безразмерный параметр S, характеризующий силы электростатического взаимодействия частиц, порядка единицы и выше, то, как показали авторы, гидродинамическим взаимодействием частиц можно пренебречь. Расчеты сечений захвата, проведенные для трехмерного слу- [c.88]

    На частицу действуют электростатические силы, возникающие при взаимодействии частицы с зарядом q с электризованной поверхностью стенки ротора, материал которого приобретает заряд, зеркально отображающий заряд частицы. Одновременно на частицу действует дипольный момент Af= 2 7 А-. [c.50]

    В то время как Дальтон считал, что химические силы можно изучить только путем исследования химических свойств, Берцелиус развил представления Деви о том, что в основе этих сил лежит кулонов-ское притяжение между различно заряженными частицами, образующими молекулу. Эта электрохимическая теория, возникшая на основе дуалистических представлений о чередовании положительно и отрицательно заряженных атомов и их взаимодействии, получила довольно широкое распространение, особенно в интерпретации реакций электролитов. Однако она оказалась ые в состоянии объяснить явления замещения в органических молекулах, так как отождествление химической связи с электростатическими силами взаимодействия дв.ух точечных зарядов привело к серьезным противоречиям. [c.23]

    Процесс растворения веществ обусловлен взаимодействием частиц растворенного вещества с молекулами растворителя. Механизм растворения твердых тел в жидкости состоит в основном из трех стадий. В качестве примера рассмотрим растворение кристалла хлорида натрия, который состоит из электростатически связанных ионов натрия и хлора. Как известно, между ионами N3+ и С1 имеет место ионная связь, между молекулами воды действуют силы Ван-дер-Ваальса и водородная связь, а между ионами на- [c.84]

    Индукционное взаимодействие. В случае растворения двух,веществ, одно из которых полярно, а другое неполярно, имеет место взаимодействие индуцированных диполей в неполярных молекулах и постоянных диполей молекул растворителя. Под действием электростатического поля полярных молекул происходит изменение электронной структуры молекул неполярного вещества. При этом центр тяжести отрицательно заряженных частиц смещается по отношению к ядру на расстояние I, что проводит к возникновению индуцированного двпольного момента tи в молекулах неполярного вещества (рис. 1). Затем происходит ориентация полярных молекул и молекул, в которых индуцирован диполыный момент. Чем больше этот момент, тем сильнее взаимодействие молекул. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, т. е. от значения [c.43]

    Нуклоны распределены приблизительно равномерно по объему ядра. Между образующими ядро частицами действуют два вида сил электростатические силы взаимного отталкивания положительно заряженных протонов и силы притяжения между всеми частицами, входящими в состав ядра, называемые ядерны-ми силами. С возрастанием расстояния между взаимодействующими частицами ядерные силы убывают гораздо более резко, чем силы электростатического взаимодействия. Поэтому их действие заметно проявляется только между очень близко расположенными частицами. Но при ничтожных расстояниях между частицами, составляющими атомное ядро, ядерные силы притяжения превышают силы отталкивания, вызываемые присутствием одноименных зарядов, и обеспечивают устойчивость ядер. [c.90]

    Пластичные смазки занимают промежуточное положение между жвдкими и твердыми смазочными материалами. Они представлякл собой структурированные коллоидные системы. Их свойства зависят прежде всего от особенностей трехмерного структурного каркаса, образующегося из дисперсной фазы, который в своих ячейках удерживает большое количество (80-90 %) дисперсионной среды. Устойчивость структурированной системы зависит от прочности структурного каркаса, сил взаимодействия между его отдельными частицами, между элементами структурного каркаса и дисперсионной средой на транице раздела фаз, числа контактов частиц каркаса в единице объема, электростатических свойств, критической концентрации ассоциации различных мыл и других коллоидно-химических факторов. [c.354]

    Устойчивость гидрофобных коллоидов согласно этой теории объясняется расклинивающим давлением, энергетическим барьером, мешающим слипанию частиц, и зависит от силы взаимодействия частиц в функции их расстояния. Сила взаимодействия при этом рассматривается как алгебраическая сумма вандерваальсовых сил притяжения и электростатических сил отталкивания. Если в колло- [c.12]

    Расчету сечения столкновения частиц посвящено довольно много работ, которые можно разделить на три группы в зависимости от степени учета сил взаимодействия частиц. Укажем лищь некоторые из них. Первые работы были выполнены Смолуховским [8] в них построена теория коагуляции коллоидов без учета гидродинамических сил взаимодействия частиц. В большинстве последующих работ рассматривалось движение частиц в маловязкой среде применительно к проблемам коагуляции капель и частиц в атмосфере [9, 10]. Учет гидродинамического взаимодействия двух медленно движущихся сферических частиц в вязкой жидкости на основе приближенных выражений, полученных методом отображений и справедливых, только если частицы находятся относительно далеко друг от друга, был сделан в работах [11 — 13]. В частности, в [И] таким образом определено сечение столкновения для двух сферических частиц разного радиуса, осаждающихся в поле силы тяжести. Результаты этой работы были использованы в [12] для расчета сечения столкновения частиц сравнимых размеров в электрическом поле. Расчет сечения столкновения двух заряженных частиц, когда одна из них значительно меньше другой, сделан авторами работы [14]. Более точный учет гидродинамических сил был осуществлен в [13, 15, 16]. Отметим, что в [15] определено сечение столкновения проводящих капель различного размера во внешнем электрическом поле, а в [16] — и с учетом заряженных капель. В последних двух работах учитывались как гидродинамические, так и электрические силы, полученные при точном решении соответствующих гидродинамических и электростатических задач. Во всех указанных работах рассматривалось взаимодействие частиц без учета внутренней вязкости. В работе [17] определено сечение столкновения двух сферических капель, внутренняя вязкость которых отлична от вязкости окружающей жидкости. Там же учтена также сила молекулярного взаимодействия капель, обеспечивающая возможность их коалесценции. [c.255]

    Эта теория исходит из того, что сольватные слои, окружающие частицы, обладают упругостью и повышенной вязкостью, препятствуя слипанию частиц, а между поверхностями частиц действует дополнительно расклинивающее давление , вызванное ионной атмосферой и противодействующее силам молекулярного взаимодействия. Коагуляция происходит тогда, когда молекулярные силы взаимодействия частиц превышают расклинивающее давление дисперсионной среды между частицами. Коагуляция возможна тогда, когда к одному золю добавить другой золь с противоположным зарядом частиц (взаимная коагуляция). При этом электростатические силы меняют знак и становятся силами притяжения. При взаимной коагуляции в осадок выпадают совместно частицы обоих золей. Взаимную коагуляцию широко используют в практике для очистки природных и промышленных вод от тонкодисперсных взвешенных частиц. Например, на водопроводных станциях перед поступлением воды на песчаные фильтры к воде добавляют немного Ab(S04)3 или Fe ls, которые, подвергаясь гидролизу, образуют положительно заряженные золи гидроксидов алюминия или железа  [c.158]

    При контакте поверхностей твердых тел, в частности коллоидных и микроскопических частиц, между ними возникают силы контактного взаимодействия. В настоящее время известно несколько видов этих сил [1,2]. В жидкой среде они связаны с самой поверхностью (ван-дер-ваальсовы, борнов-ские) или с адсорбционным слоем (электростатическое взаимодействие адсорбированных ионов, электрострик-ционные силы, энтропийный эффект дезориентации адсорбированных линейных молекул поверхностно-активных веществ или цепей полимеров), а также с прослойками среды, разделяющими сопряженные поверхности. Результирующая этих сил определяет знак и величину силы контактного взаимодействия. Важный пример анализа сил взаимодействия частиц — теория устойчивости сильно заряженных лиофобных коллоидных растворов Дерягина — Ландау — Фервея — Овербека, которая основана на учете ван-дер-ваальсовых сил притяжения и электростатического отталкивания диффузионных слоев одноименных ионов, окружающих частицы. Сложение функциональной зависимости этих сил от расстояния между поверхностями позволяет выявить высоту энергетического барьера, препятствующего слипанию частиц, и положение потенциальной ямы, определяющей расстояние между ними. [c.117]

    Таким образом, критерий коагуляции в динамических уело-ВИЯХ является условием, накладываемым на число Рейнольдса Reo, причем зависимость критического числа Рейнольдса R kp, (> от параметров поверхностных сил Ло и А выражена слабо. Иными словами, если в теории ДЛФО, пренебрегающей динамикой сближения частиц, критерий коагуляции определяется соотношением электростатических и молекулярных сил взаимодействия частиц, то в динамических условиях возможность коагуляции определяется в первую очередь гидродинамикой вязкой дисперсионной среды в зазоре между поверхностями частиц. Отсюда легко понять, что для коагуляции в динамических условиях чрезвычайно существенное значение приобретает фактор формы поверхностей частиц, т. е. для анизометричных частиц потеря агрегативной устойчивости в динамических условиях более вероятна. Рассмотрим в связи с этим процесс взаимодействия двух частиц, имеющих форму плоских дисков радиусом Ri и толщиной 2Ri (Ri — радиус кривизны боковой поверхности). Получив от внешнего источника начальную относительную скорость Vo в момент, когда расстояние между их поверхностями составляет ho Ri, диски сближаются так, что один из них все время остается перпендикулярным другому. [c.19]

    В зависимости от природы сил взаимодействия различают физическую (электростатическую) адсорбдию, вызванную чисто куло-новским взаимодействием, специфическую, когда, например, ионы адсорбируются на одноименно заряженной иоверхности, и обусловленную, в основном, силами Ван-дер-Ваальса, а также хемосорб-цию, связанную с образованием химических соединений между адсорбентом (в данном случае металлом) и адсорбатом (в данном случае частицами, находящимися в ра творе). [c.235]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Молекулярные представления о природе поверхностных явлений основаны на механизме межмолекулярного взаимодействия между частицами твердого тела и газа, а такж частиц газа между собою. Если исключить пока хемосорбционные процессы, то основной вклад в поверхностные явления вносят дисперсионные силы. Оказывают влияние на энергетику поверхностного взаимодействия также электростатические силы и водородная связь. В целом можно утверждать, что чем больше удельная поверхность пор 5 и чем ближе разделяемая газовая смесь по своим свойствам приближается к неидеальным системам, тем сильнее будет сказываться влияние поверхностных явлений на процессы в пористой мембране. [c.42]

    Структурирование объясняется вандерваальсовыми или электростатическими силами взаимодействия между частицами дисперсной фазы. В концентрированных системах расстояние между частицами дисперсной фазы небольшое, поэтому и структурирование в них более эффективно. Если структурирование [c.293]

    Если координаты частиц совпадают, т. е. Х = Х2, после подстановки в вышеприведенные уравнения получим, что 11за=0, а ф5 имеет некоторое конечное значение. Напрашивается один из вариантов трактовки несмотря на принятое допущение об исключении взаимодействия, между частицами действует какая-то сила , которую можно было бы назвать обменной силой . В природе известен другой пример того, что в системе, состоящей из большого числа частиц, некоторое состояние предпочтительнее по сравнению с другими возможными состояниями системы. При этом оказывается ненужным привлекать к рассмотрению никакие силы для объяснений достаточно понятие энтропии, введенного термодинамикой. Таким образом, легко видеть, что если учесть взаимодействие частиц, т. е. их электростатическое притяжение или отталкивание, то из-за различий в характере движения электронов в состояниях т15а и ips вырождение снимается. Оба состояния характеризуются различными энергиями. Какое состояние при этом устойчиво — симметричное или антисимметричное,— зависит от значения потенциала, под действием которого находятся частицы. Если последний равен нулю, то принимается во внимание только электростатическое взаимодействие электронов между собой и состояние, характеризующееся волновой функцией трА, устойчивее , чем для функции фз. Как было показано в разд. 3.6, функция фл описывает состояние электронов с одинаковым спином. В этом случае обменное взаимодействие коррелирует с кулоновским взаимодействием. Такое обменное взаимодействие для антисимметричной функции ifiA называют также корреляцией по Ферми . В -фз-состоянии такой корреляции с кулоновским взаимодействием не существует. [c.83]

    Различают кинетическую энергию, или энергию движения, и потенциальную энергию, или энергию положения и взаимодействия частиц системы. Данная система или тело может обладать потенциальной энергией вследствие того,, что находится в поле действия сил, вызывающих притяжение или отталкивание (например, силы тяжгсти, действия упругой деформации,, силы взаимодействия электрических зарядов). Разность потенциальных энергий двух состояний системы или двух ее конфигураций равна работе гравитационных, упругих, электростатических или других сил, взятой со знаком минус. Следовательно, физический смысл работы имеет только разность потенциальных энергий двух состояний или двух уровней системы. [c.26]

    Физической основой падения активности по сравнению с концентрацией является притягательное взаимодействие частиц. Взаимное отталкивание частиц в растворе должно, наоборот, вызывать увеличение активности. В разбавленных растворах электролитов электростатическое притяжение ионов оказывается преобладающим у <1 и падает с ростом концентрации. Учет собственного размера ионов эквивалентен учету сил отталкивания, не позволяющих ионам сблизиться на расстояние, меньшее а. Второе приближение теории, учитывающее этот фактор, приводит к менее резкому уменьшению коэффициента активности (рис. 10) и позволяет описать опытные данные в более широком интервале концентраций. Однако в концентрированных растворах большая часть молекул воды связана ионами, так что добавление новых порций электролита должно сопровождаться разрушением сольватных оболочек и преодолением сил ион — дипольного взаимодействия. Это эквивалентно преобладанию отталкиватель- [c.41]


Смотреть страницы где упоминается термин Силы взаимодействия частиц электростатические: [c.206]    [c.256]    [c.186]    [c.117]    [c.206]    [c.199]    [c.206]    [c.199]    [c.176]    [c.115]    [c.330]    [c.224]    [c.142]    [c.164]   
Очистка воды коагулянтами (1977) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Силы взаимодействия частиц

Частицы взаимодействие



© 2025 chem21.info Реклама на сайте