Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Загуститель коллоидный

    Наиболее волокнистую структуру имеют смазки на основе натриевых мыл. Когда волокна разрываются за счет напряжений двига, смазка теряет консистентность, которую можно восстановить (если при работе не теряется такой основной компонент, как вода), вновь растворяя мыло и охлаждая его с тем, чтобы вызвать рост новых кристаллов. Длина волокон — от 0,2 до 50 мк, соотношение между длиной и диаметром колеблется в пределах от 10 1 до 200 1 [82]. Размеры частиц некоторых загустителей коллоидных консистентных смазок можно сравнить с размерами бацилл и вирусов. [c.504]


    В качестве пигментов для кремнийорганических эмалей наиболее часто используют титановые белила и алюминиевую пудру, а в качестве загустителя — коллоидную кремниевую кислоту. [c.264]

    Содержание загустителя в смазке обычно колеблется в пределах 9—25%. Загуститель придает смазке консистенцию и те специфические свойства, которые отличают ее от жидкого масла. В большинстве смазок с твердым загустителем коллоидные структуры, которые он образует, существуют наряду с наличием микрокристаллов. Таким образом, эти системы являются смешанными. [c.292]

    Пластичной смазкой называют продукт, состоящий из дисперсионной (жидкой) среды, которая удерживается в ячейках структурного каркаса, образованного твердыми частицами дисперсной фазы (загустителя) коллоидных размеров. [c.301]

    Консистентные смазки — это пластичные коллоидные системы, существенно отличающиеся по своей природе и свойствам от жидких масел. Их получают путем введения в жидкие масла загустителей и других компонентов, придающих им специальные свойства (присадки, наполнители, стабилизаторы и т. п.). [c.185]

    Производство неорганических и органических смазок сводится к диспергированию загустителя, полученного отдельно химическим путем, в масле. Диспергирование загустителя в масле осуществляется на высокопроизводительных коллоидных мельницах непрерывного действия, краскотерках и др. Смешение загустителя с масЛом может производиться как при нормальной, так и при повышенной температурах. [c.192]

    Синерезис является следствием недостаточной коллоидной стабильности смазки в условиях температурных и механических воздействий. При достаточно больших количествах выделившегося масла (15— 20%) свойства смазки значительно изменяются и она не может использоваться по назначению. Наибольшую опасность синерезис представляет для смазок, изготовленных на маловязких маслах и содержащих небольшие количества загустителя. [c.198]

    Гомогенизация [2—5] повышает равномерность распределения загустителя в масле, улучшает внешний вид, а также коллоидную и механическую стабильность смазок. В простейшем случае гомогенизацию осуществляют продавливанием смазки через сетку или систему сит, через узкие (30—50 мкм) зазоры вальцовочных машин. Широко распространены методы однократной гомогенизации на заключительной стадии производства смазок [4]. Однако в непрерывных процессах успешно применяют и многократную гомогенизацию на каждой технологической стадии за счет циркуляции продукта через гомогенизирующие клапаны при относительно низком перепаде давления, что исключает применение специальных аппаратов. [c.98]


    Реологические свойства пластичных смазок. Пластичные смазки по определению являются пластичными аномально вязкими телами. Их реологические свойства значительно сложнее, чем у жидких масел (жидкостей), что определяет коренные различия условий оптимального применения масел и смазок [284]. Пластичные смазки представляют собой дисперсные системы класса псевдогелей. Частицы загустителя (мыла, парафин, церезин, пигменты), имеющие коллоидные размеры, образуют структурный каркас смазки, подобный губке. Поры каркаса удерживают дисперсионную среду — жидкое масло.-Наличие жесткого структурного каркаса наделяет смазки свойствами твердого тела. [c.271]

    Коллоидно-химическую науку, однако, интересуют формы молекулярно связанной воды. Нами ранее [71—74] было показано, что следует выделять сорбционно (прочно) связанную воду, воду граничных слоев и осмотически связанную воду. Свойства и отличительные особенности указанных категорий молекулярно связанной воды удобно рассмотреть применительно к слоистым и слоисто-ленточным силикатам, которые обладают большой вариабельностью коллоидно-химических свойств в зависимости от особенностей строения, состава обменного комплекса, и в последнее время находят все возрастающее применение в качестве эффективных сорбентов, катализаторов, наполнителей полимерных сред, загустителей, пластификаторов, компонентов буровых растворов и т. д. [c.31]

    Приготовить две смазки, состоящие из одинаковых компонентов, но с разным содержанием загустителя (или одинаковой рецептуры, различающихся избыточным содержанием кислоты и щелочи). Определить и сравнить их коллоидную и механическую стабильность, предел прочности при сдвиге. [c.273]

    Приготовить две смазки, различающиеся только типом загустителя (мыльный, углеводородный, силикагелевый), при одинаковом содержании всех остальных компопентов. Определить и сравнить предел прочности, коллоидную и химическую стабильность, смазочную и защитную способность. [c.273]

    Термомеханическое диспергирование загустителя в дисперсионной среде осуществляется при одновременном термическом и механическом воздействии, приводящем к растворению твердой фазы с образованием коллоидных или истинных рас творов. Диспергирование неорганических загустителей происходит при интенсивном механическом воздействии и температурах 40—60 С. [c.366]

    По консистенции смазки разделяют на полужидкие, пластичные и твердые. Пластичные и полужидкие смазки представляют собой коллоидные системы, состоящие из дисперсионной среды, дисперсной фазы, а также присадок и добавок. Твердые смазки до отвердения являются суспензиями, дисперсионной средой которых служит смола или другое связующее вещестю и растворитель, а загустителем — дисульфид молибдена, графит, технический углерод и т.п. После отвердения [c.313]

    Качество смазок зависит от свойств и концентрации загустителя, а также от свойств загущаемого масла его вязкости и химического состава. Прочность коллоидной структуры смазок улучшается стабилизаторами, которыми служат вода, щелочи, высоко- и [c.375]

    Воздействие кислорода воздуха, нагрева и других факторов вызывает окисление и разрушение как загустителя, так и масла. В мыльных смазках менее устойчивым компонентом является мыло, в защитных — масло. В смазках появляются кислоты, оказывающие корродирующее воздействие на металл, а также смолистые и углистые отложения коллоидная система частично или полностью разрушается. [c.376]

    Новая пластичная смазка содержит дополнительно нефтяную полярную фракцию ПФ-1 и эффективно работает в широком диапазоне температур. В рецептуре смазки стеарат лития выполняет роль загустителя минерального масла, дифениламин является антиокислительной присадкой, дисульфид молибдена — модификатор трения, нефтяная полярная фракция модифицирует коллоидную структуру пластичной смазки, повышая одновременно функциональное действие каждого компонента системы. [c.280]

    Линейные полиэлектролиты широко используются в различных отраслях техники в качестве флокулянтов и коагулянтов коллоидных дисперсий в воде, например для осветления отработанных и мутных вод, для стабилизации коллоидов, в частности эмульсий и пен, для структурирования почв и грунтов. Они находят применение при шлихтовке, крашении и окончательной отделке волокон, при отделке и упрочнении бумаги, используются как загустители в пищевой, медицинской и фармацевтической промышленности. Сшитые полиэлектролиты служат ионообменными материалами и комплексонами, и т. д. [c.115]

    В отличие от жидких смазочных масел эти смазки представляют собой мазеобразные продукты — пластические коллоидные системы. Они состоит из различных минеральных масел и загустителей первые являются жидкой фазой, вторые — твердой. [c.414]

    Особую группу с.мазочных материалов составляют консистентные смазки — сложные коллоидные системы, состоящие из минеральных или синтетических масел (основ), загущенных мылами или твердыми углеводородами. В качестве загустителей наиболее часто используются кальциевые и натриевые мыла, а также алюминиевые, магниевые, литиевые, свинцовые, бариевые и некоторые другие. В отдельных случаях в смазку вводят наполнитель, например графит или канифоль. В последнее время в консистентные смазки вводят присадки (2 . Таким образом, химический состав консистентных смазок широко варьируется и в каждом конкретном случае должен определяться особо. [c.238]


    Коллоидный кремнезем находит многочисленные применения благодаря тому, что иосле высушивания он необратимо превращается в нерастворимый кремнезем. Его пригодность к использованию в качестве загустителя и связующего для неорганических волокон и порошков зависит от прочности геля, формирующегося около точек контакта между макроскопическими частицами веществ, подлежащих связыванию. [c.502]

    Использование в качестве агентов, вызывающих формирование поперечных связей, загустителей и наполнителей в органических полимерных материалах, что обеспечивается посредством связывания полимерных цепочек с равномерно распределенными коллоидными частицами кремнезема. Это находит применение при получении, например, искусственных кож, изделий из вспененного латекса, эластомеров. [c.578]

    Новейшие образцы консистентных смазок представляют зачастую коллоидные растворы мыл в жидкостях ненефтяного происхождения и коллоидные растворы немыльных загустителей в нефтяных маслах. К первой группе относятся растворы литиевого мыла в алифатических ди-эфирах [83]. Ко второй группе — обычные углеводородные масла, загущенные гидрофобным бентонитом [84, 85], мелким кремневым ангидридом или аттапульгитом, очищенными и приобретшими гидрофобный характер, фталоциа-нином меди [86] или, наконец, сажей. [c.504]

    Пластичные (консистентные) смазки представляют собой пластические коллоидные системы. Это особый класс смазочных материалов, приготавливаемых путем введения в смазочные масла специальных, главным образом твердых, загустителей, ограничивающих их текучесть. Большинство консистентных смазок п широком интервале температур ведет себя как твердые упругие тела. Они приобретают способность необратимо деформироваться (течь), если приложенная сила больше предела текучести смазки. С повышением температуры предел текучести консистентных смазок понижается и при некоторой, определенной для каждой смазки температуре становится равным нулю (смазка течет). Вторым характерным признаком консистентных смазок, отличающим их от смазочных масел, является аномальное внутреннее трение, в отличие от нормальных н идкостей, зависящее от условн течения (структурная вязкость). Эти свойства консп-стентных смазок связаны с их коллоидной природой и структурой. [c.146]

    Стадиясмешениякомпонентовидиспер-гирования загустителя осуществляется в варочных аппаратах (мешалках) при повышенных температурах — на 15— 20 С выше температуры плавления загустителя. При этохм твердая фаза растворяется в жидкой основе с образованием истинных или коллоидных растворов. Процесс термического диспергирования ускоряет перемешивание. Диспергирование неорганических загустителей в масле происходит в основном за счет интенсивного механического перемешивания при температуре 40— 60 С. [c.299]

    Коллоидная стабильность смазок лишь отчасти связана с синерезисом, поэтому эти свойства нельзя отождествлять. Чем выше загуш аюш ая способность загустителя и чем больше его в смазке, тем лучше связана в ней жидкая фаза. Высокой коллоидной стабильностью при хранении отличаются углеводородные смазки — гомогенные сплавы минеральных масел с твердыми углеводородами (церезином и парафином), распределенными в смазках в виде тонких, мономолекулярных слоев — кристаллов (см. рис. 12. 1, ж). мазки, загуш енные мылами, менее стабильны, так как структурный каркас не так плотен, а кристаллическая решетка мыл значительно менее масло- мка, чем кристаллическая решетка углеводородов механически задерживаемого масла в каркасе мыл относительно больше, а удерживается оно хуже. Кроме того, мыльные смазки больше подвержены процессам старения, следствием которых являются структурные изменения и связанное с ними выделение масла. [c.662]

    Промышленный интерес представляют соли нафтеновых кислот. Большинство солей нафтеновык кислот не кристаллизуется с имеет коллоидный характер, а иног ,а мазеобразную консистенцию. Соли щелочных металлов хорошо растворимы в воде и используются как технические мыла (мылонафт). Нафтенаты кальция и алюминия служат загустителями масел при получении пластичных смазок, а нафтенаты свинца зходят как компонент смазок, работающих под повышенным давлением. Нафтенаты свинца, кобальта и марганца используются в качестве сиккативов (веществ, ускоряющих полимеризацию олифы) Е лакокрасочной промышленности, нафтенаты меди предохраняют древесину и ткани от бактериального разложения. Довольно широкое применение получили нафтенаты алюминия. Их раствор в скипидаре применяется в качестве лака, а способность диспергировать в бензине с образованием золей и гелей позволила использовать их в качестве ком-понента зажигательных смесей (напалма). [c.190]

    Великовский и Ярцева-Подъяпольская [348] считают, что между консистенцией смазки и ее способностью сохранять свою форму нет прямой зависимости. Консистенция определяется только соотношением загустителя и масла в смазке, тогда как пластическая стабильность зависит в значительной степени от характера связей (жестких, упругих, лабильных) между элементами коллоидной структуры, образующими смазку. Поэтому стабильность формы комка испытуемой мази при ])абочей температуре необходимо определять специальным способом, который заключается в следующем. [c.729]

    Одной из важнейших и, как правило, наиболее продолжительной стадией при приготовлении мыльных смазок является получение загустителя (или его концентрата) путем омыления жирового сырья. Скорость омыления жиров, проходящего в несколько стадий (гидролиз глицеридов жирных кислот с постепенным отщеплением радикалов и образованием ди- и моноглицеридов и, наконец, глицерина и мыла), зависит от темнературы, концентрации реагирующих компонентов, условий контактирования, концентрации щелочи и состава жиров (жирных кислот). По завершении процесса омыления и полного удаления из системы воды (или оставления оиределениого ее количества при необходимости) мыльно-масляную дисперсию нагревают до температуры растворения мыла в масле и образования изотропного расплава, в котором мыльный загуститель присутствует в виде отдельных молекул и агрегатов коллоидных размеров. [c.254]

    Приготовить смазку по заданной рецептуре (дисперсионная среда, загуститель, добавки и их содержание в %). Определить основные показате.ци ее свойств (предел прочности при сдвиге, эффективную вязкость, коллоидную и механическую стабильность, температуру каплепадепия). [c.273]

    Пластичные смазки представляют собой высокоструктурированные тиксотропные дисперсии твердых загустителей в жидкой среде. Они ОТНОСЯТСЯ к числу смазочных материалов, широко используемых в различных областях техники. Отечественное промышленное производство смазок началось более 70 лет назад. Первой смазкой была колесная смазь, изготовленная из нефтяных остатков, загущенных кальциевыми мылами смоляных кислот. Систематические исследования структуры и свойств смазок началось в 30-х годах. Первыми исследователями и пропагандистами научного подхода к разработке и применению пластичных смазок в СССР были Д. С. Великовский и В. П. Варенцов. Всесторонние исследования смазок выявили их коллоидную природу, позволили научно обоснованно подойти к их производству и применению. Несмотря на сравнительно малые объемы производства (4—5% от общего объема производства смазочных материалов) по разнообразию областей применения смазки превосходят другие смазочные материалы. [c.355]

    При всем многообразии форм и размеров частиц загустителя, образующихся при охлаждении, смеси компонентов, общим для них является способ формирования структурного каркаса. В процессе охлаждения коллоидного (мыльные смазки) или истинного (углеводородные смазки) раствора происходит кристаллизация загустителя с одновременным ростом и связыванием кристаллов (bo iokoh) друг с другом и образованием кристаллической сетки. В обычных коллоидных системах (с малым содержанием твердой фазы) частицы дисперсной фазы при столкновениях коагулируют и выпадают в осадок. Высокая концентрация дисперсной фазы в смазках препятствует коагуляции частиц, они формируют пространственный структурный каркас. Чем выше анизометричность (соотношение их длины и ширины) частиц загустителя, тем более прочную структуру они образуют. [c.356]

    Многие промышленные смазки на маловязких маслах или с малым содержанием загустителя недостаточно коллоидно-стабильны. Чтобы выделение масла из таких смазок было минимальным, их расфасовывают в сравнительно небольшую тару, что исключает или уменьшает отпрессовываемость масла под действием собственного веса. Для ускорения отделения масла при оценке коллоидной стабильности смазок используют воздействие нагрузок (давления), центробежных сил, нагревания и другие факторы. [c.362]

    Дисперсная фаза. Температурные пределы применения смазок во многом определяются температурами плавления и разложения загустителя, его растворимостью в масле и концентрацией в смазке. От природы загустителя зависят антифрикционные и защитные свойства, водостойкость, коллоидная, механическая и антиокислительная стабильности смазок. Так, мьиа, являясь поверхностно-активными веществами, вьшолняют в смазках одновременно функции загустителя, противоизносного и противозадирного компонентов. При этом модифицирующее действие мыл на поверхности трения связано с поверхностно-молекулярным, а не химическим взаимодействием, что характерно для фосфор-, серо- и хлорсодержащих присадок. [c.311]

    Пластичные смазки — мазеобразные продукты, не обладающие текучестью при обычных температурах, цредставляющие собой особый класс смазочных материалов, приготовляемых путем введения в смазочные масла специальных, главным образом твердых мелкодисперсных загустителей, ограничивающих текучесть масел. Смазки — это коллоидные системы, имеющие пространственную структуру, образованную частицами загустителя. Жидкая фаза удерживается в полутвердом состоянии благодаря силам притяжения твердых частиц, а также механически включается внутрь кристаллов загустителя. Электронной микрофотографией, а также рентгеноструктурным анализом установлено, что большинство смазок имеет волокнистую структуру. Некоторые вещества (вода и др.), называемые стабилизаторами, повышают прочность коллоидной структуры. [c.374]

    Консистентные смазки представляют собой иластическую коллоидную систему, образованную из смеси минерального масла и загустителя. В качестве загустителя слул ат соли жирных кисло- , церезин и парафин. [c.179]

    Консистентными смазками называется большая группа нефтепродуктов различного назначения, представляющих собой мазеобразные, иногда почти твердые, пластичные вепцества коллоидной структуры. Как правило, консистентные смазки изготавливаются путем загущения различных нефтяных, а иногда и синтетических масел каким-либо загустителем. [c.247]

    Смазки или мази, являясь пластичными смазочными материалами, имемт полутвердую конспстендию и представляют собой коллоидные системы, состоящие в основлом из минерального масла и загустителя. Наиболее широко применяются консистентные смазки, в состав которых в качестве загустителя входят натровые и кальциевые мыла — соли естествен/ных и синтетических жирных кислот, а также церезины, парафины и др. Смазки, изготовленные на натровых мылах, имеют более высокую температуру плавления, чем смазки, в состав которых входят кальциевые мыла. Натровые смазки чувствительны к влаге, поэтому при повыше ,ной влажности среды применение их допустимо лить при условии частой смены смазки. Кальциевые смазки являются влагостойкими. [c.42]

    ПЛАСТИЧНЫЕ СМАЗКИ (коргсистентные смазки, от лат. onsisto-состою, застываю, густею), мазе- или пастообразные смазочные материалы, получаемые введением твердых загустителей в жидкие нефтяные или синтетич. масла и их смеси. Как правило, П.с. (в литературе их для краткости часто наз. просто смазками)-трехкомпонентные коллоидные системы, содержащие дисперсионную среду (жидкая основа), дисперсную фазу (загуститель), модификаторы структуры и добавки (наполнители, присадки). Благодаря высокой концентрации коллоидные частицы загустителя образуют пространств, структурный каркас, в ячейках к-рого прочно удерживается масло. Большинство П. с. имеет волокнистое строение. [c.565]

    Коллоидная стабильность характеризует способность смазок прн хранении и эксплуатации сопротивляться выделению масла (под действием т-ры, давления и др. факторов или самопроизвольному вследствие структурных изменений, напр, под воздействием собственной массы). Коллоидная стабильность смазок определяется степенью совершенства их структурного каркаса и вязкостью дисперсионной среды чем выше вязкость масла, тем труднее ему вытекать из объема смазки. Мн. пром. смазки на основе маловязких масел или с малым содержанием загустителей недостаточно коллондостабильны. Для предотвращения лнбо понижергия выделения масла из таких смазок их расфасовывают в небольшую тару. Коллоидная стабильность оценивается по массе масла (в %), отпрессованного из смазки при комнатной т-ре в течение 30 мин для П. с. она не должна превышать 30% во избежание резкого упрочнения, нарушения их нормального поступления к смазываемым пов-стям и ухудшения вязкостных и смазывающих св-в. [c.566]

    Хим. стабильность-стойкость смазок к окислению кислородом воздуха (в широком смысле-отсутствие изменения св-в смазок при воздействии на них к-т, щелочей и др.). Окисление приводит к образованию и накоплению кислородсодержащих соед. в смазках, снижению их прочности и коллоидной стабильности и ухудшению иных показателей. Хим. стабильность П.с. удается повысить тщательным подбором масляной основы и загустителей, введением антиокислит. присадок, изменением технол. режимов приготовления. Стойкость к окислению особенно важна для таких смазок, к-рые заправляются в узлы трения 1-2 раза в течение 10-15 лет, работают при высоких т-рах, в тонких слоях и в контакте с цветными металлами. Большинство методов определения этого показателя для П. с. основано на их окисляемости в тонком слое на к.-л. пов-сти (стекло, сталь, медь) при повыш. т-ре, оцениваемой по величине индукц. периода и скорости поглощения кислорода. [c.566]

    Применяют П. к. и ее соли в виде водных р-ров как стабилизаторы и флокулянты коллоидных систем в технол. процессах структурообразователи и загустители связующие при создании, иапр., пломбировочных материалов (в медицине) антистатики для волокон и кож для получеиия поликомплексов (см. Полимер-полимерные комплексы). П. к.-носитель лек. и физиологически активных в-в, ферментов, ее Fe-соли обладают кровоостанавливающей сям-собностью. Сшитые полимеры и сополимеры акриловой к-ты-ионообменные, в т.ч. комплексообразующяе, смолы. [c.602]

    Крахмал (Amylum) картофельный, пшеничный, кукурузный и рисовый представляет собой белый порошок без запаха-и вкуса. В воде не растворяется, при нагревании крахмальный порошок сильно набухает, образуя коллоидный крахмальны клейстер, характеризующийся высокой вязкостью и клейкостью. Крахмальный клейстер довольно широко используется в-фармацевтической практике как склеивающее вещество при изготовлении таблеток, в качестве загустителя — в суспензиях и эмульгаторах, загустителя и стабилизатора при изготовлении эмульсий. [c.29]

    Коллоидный кремнезем находит применение в качестве связующего при получении материалов из высокожаростойких алюмосиликатных волокон [496]. Для того чтобы поддерживать равномерное распределение связующего, используется такой загуститель, как акриловый полимер [497]. Моор [498] смешивал коллоидный кремнезем с различными видами латекса, коагулировавшего после того, как связующее взаимодействовало с волокнами. Придавать прочность и жесткость органическим листовым волокнистым материалам, а также листам бумаги можно добавлением коллоидн-ого кремнезема [499—502]. При изготовлении форзацной бумаги, используемой для рифления, ее жесткость улучшается за счет пропитки коллоидным кремнеземом [503]. Добавление от 1 до 5 % коллоидного кремнезема в определенного вида бумажные массы придает бумаге прочность, жесткость и т. п. [504]. Нежелательное свойство полиамидных волокон расщепляться и расслаиваться в значительной мере устраняется путем пропиткп коллоидным кремнеземом. Кожа способна разбухать и уплотняться после поглощения коллоидного кремнезема [505]. [c.584]


Смотреть страницы где упоминается термин Загуститель коллоидный: [c.724]    [c.253]    [c.186]    [c.297]   
Дисперсионная полимеризация в органических средах (1979) -- [ c.279 ]




ПОИСК







© 2025 chem21.info Реклама на сайте