Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория процесса образования кокса

    Вопросы теории формирования внутренних напряжений в процессе образования кокса [c.57]

    ТЕОРИЯ ПРОЦЕССА ОБРАЗОВАНИЯ КОКСА [c.400]

    Теория процесса образования кокса [c.402]

    Такова сущность концепции теории Раковского образования кокса на основе химических процессов, происходящих в процес- [c.410]

    Вопросы эти не являются новыми по некоторым из них накоплен большой экспериментальный материал. Исследования ведутся во многих странах, потребляющих каменный уголь и производящих кокс. Тем не менее развитие науки о строении углей и кокса и о процессе образования кокса все еще отстает от практики коксования углей. Между тем огромный рост в СССР черной металлургии до настоящего времени и предусмотренный семилетним народнохозяйственным планом предъявляет требование введения в шихту для коксования все большего количества самостоятельно некоксующихся углей, а также повышения качества кокса в связи с увеличением интенсивности доменного процесса и объема доменных печей. Все это требует разработки научной теории процесса коксования каменных углей. [c.3]


    Этими затратами определяется полезный, или так называемый теоретический расход энергии теор- Так, например, при получении карбида кремния нужно нагреть исходные материалы —кварцевый песок и кокс —до такой температуры, при которой возможна реакция взаимодействия окиси кремния с углеродом. Реакция восстановления кремния углеродом с образованием карбида кремния относится к числу эндотермических реакций. Поэтому при определенной температуре реагирующих материалов она будет протекать в желательном направлении с поглощением некоторого количества энергии. Заметим, что при экзотермических реакциях в ходе реакции происходит выделение энергии. Очень часто, кроме основной реакции, протекают побочные химические реакции (например, по восстановлению или связыванию нежелательных примесей, которые присутствуют в исходных материалах) и физические процессы (например испарение, расплавление и др.), при которых происходит поглощение или выделение энергии. [c.30]

    Для создания теории процесса коксования необходимо было накопить большое количество фактов и связать их с существующими знаниями о природе ископаемых углей. Но так как знания о природе углей до недавнего времени были еще весьма примитивны, а все исследования процесса коксообразования проводились с разнообразными по свойствам углями и при различных условиях, то выводы давали весьма противоречивую картину процесса коксообразования. Были выдвинуты чрезвычайно разнообразные гипотезы об образовании кокса, которые все строились на сравнительно ограниченных объектах исследования и поэтому не могли объяснить все противоречия, которые возникали, как то лько та или иная гипотеза проверялась на других типах углей. Вместе с тем история этой эволюции во взглядах на процесс коксования дает очень много интересного материала для выводов о явлениях, наблюдаемых при пиролизе угля, и позволяет сформулировать современные теоретические представления о процессе коксообразования. [c.400]

    Наиболее четко эти критические замечания сформулированы М. И. Кузнецовым и Л. Л. Нестеренко [92]. Как уже было сказано, все разнообразные теории коксообразования основываются на представлениях о наличии или отсутствии в каменных углях составных частей, ответственных за спекание. Следовательно, уголь рассматривается как смесь определенных составных частей и даже индивидуальных органических соединений. Большинство исследователей считало, что образование кокса из угля зависит от наличия в них битумов и если их из угля удалить, то он теряет спекающую способность. Однако, как уже было сказано, многочисленные факты, собранные позже, в значительной мере опровергли этот вывод. В поисках дополнительных причин, вызывающих спекание угля, привлекли характеристику остаточного угля после извлечения битумов, которая, якобы, также влияет в той или иной степени на процесс коксообразования. [c.404]


    Следует отметить еще, что общий недостаток изложенных выше теорий заключается в том, что они затрагивают только часть процесса формирования кокса, главным образом, спекание угля, т. е. освещают закономерности процесса в целом и не дают общего представления о процессе образования кускового кокса. [c.411]

    С повышением температуры увеличивается доля процессов непосредственной молекулярной деструкции в крекинге и уменьщается эффект самоторможения и торможения. Это находится в согласии с предсказанием цепной теории, требующей уменьшения роли цепных реакций с повышением температуры (длина цепи сильно уменьшается с увеличением температуры), и экспериментальными данными о влиянии температуры на действие ингибиторов [68]. Уменьшение эффектов торможения и самоторможения с увеличением температуры сопряжено не с тем, что резко уменьшается адсорбция ингибиторов на стенках [121], но в первую очередь с тем, что сильно замедляются реакции развития цепей, а также реакция обрыва цепей на ингибиторах вследствие уменьшения стерических факторов этих реакций с повышением температуры (см. главу IV). Вторичные реакции, с которыми связано образование конденсированных продуктов и кокса, протекают и при высоких температурах (900—1000°) с участием радикалов. Однако при еще более высокой температуре идут уже реакции распада с образованием водорода, сажи и ацетилена, ускоряемые кристаллическими зародышами углерода [121]. Хотя высокие температуры сильно способствуют диссоциации на радикалы, при высоких концентрациях радикалов резко усиливаются реакции рекомбинации и диспропорционирования радикалов, в результате чего снижается цепной эффект. [c.59]

    Пироуглерод образуется по механизму, совершенно отличному от механиз(ма образования нефтяного кокса. На этот механизм имеются самые различные взгляды. Наиболее обоснована теория П. А. Теснера, согласно которой пироуглерод образуется в результате прямого разложения углеводородных молекул на реакционной поверхности до элементов. Из закономерностей образования пироуглерода следует, что снизить его выход на пропущенное сырье при пиролизе можно следующими способами (осуществимыми, разумеется, в границах, определяемых технологией процесса). [c.118]

    Механизм высокотемпературного разложения углеводородов изучен недостаточно, поэтому отсутствует единая теория образования ацетилена при термическом разложении углеводородов в интервале 1300—1500° С. Однако существующие исследования позволяют высказать предположения об изменении механизма крекинга при переходе к более высоким температурам замедляются реакции развития цепей и ускоряются процессы молекулярной деструкции >2. Вторичные реакции образования конденсированных продуктов и кокса протекают с участием радикалов при 900—1000° С. Однако при еще более высоких температурах наблюдаются молекулярные реакции распада с образованием водорода, сажи и ацетилена, ускоряемые кристаллическими зародышами углерода. Так, при исследовании распада метана над раскаленной до 1500—1700° С угольной нитью (образующиеся продукты немедленно выводили из сферы реакции) основным 72 [c.72]

    Теория Бертело была основана на детальном изучении алифатических углеводородов только с одним и двумя атомами-углерода. Не удивительно, что позднее она подверглась серьезной критике, особенно со стороны Бона и Габера. Габер указал, что первое положение Бертело является только произвольным толкованием факта постоянного образования графита в процессе газификации углеводородов при постепенно повышающихся температурах. Он отмечает однако, что кокс никогда не бывает свободен от водорода. Габер критикует также и второе положение Бертело, считая, что равновесие может быть случайно достигаемым состоянием, постоянным лишь вследствие постоянного выбора внешних условий. Действие температуры на равновесие является, по мнению Габера, неясным, и равновесие метана , даваемое Бертело, очевидно, несовместимо с необратимой реакцией образования бензола из ацетилена. Габер также считает, что. алифатические углеводороды с одним или двумя углеродными атомами представляют некоторый изолированный специальный случай, отличающий их от высших гомологов. Бертело особенно отмечал значение ацетилена как важного фактора в процессах синтеза. Хотя вполне справедливо , что бензол может быть получен из ацетилена действием высокой температуры, но Бон совершенно убедительно показал относительно незначительную роль ацетилена в качестве продукта пиролиза простых углеводородов. [c.9]

    Относительно теории параллельно-последовательных реакций ситуация складывалась иначе. Долгое время механизм образования кокса из углеводородного сырья рассматривали на уровне черного ящика , экспериментальным путем подбирая технологические параметры процесса. Было понятно, что происходит трансформация углеводородов и неуглеводородных компонентов сырья в сторону увеличения молекулярной массы компонентов. Процесс получил название поликонденсация . В процессе крекинга углеводородов образовывались голоядерные ароматические структуры, которые конденсировались в более протяженные псевдографитовые структуры -предшественники кокса. Совокупность этих фактов была представлена в виде теории параллельно-последовательных реакций крекинга и поликонденсации. Было предложено множество вариантов схем параллельно-последовательных реакций. Большое количество модификаций схем объясняется учетом особенностей разнообразного состава сырья. [c.61]


    Следующая теория, которая существенно обогатила представления о механизмах трансформации сырья в процессе получения кокса, связана с изучением Ф.Г. Унгером, в 1980-х годах, парамагнетизма в нефтяных системах. В работе Ф.Г. Унгера и сотрудников [129] показано, что широко распространенное в нефтехимической литературе мнение о квазикристалличности основной части надмолекулярных образований, объединенных под общим названием асфальтены, расходится с экспериментальными данными, получаемыми методами рентгеновской дифракции. Из этого следует, что структура асфальтенов является неупорядоченной, что создает трудности при их идентификации и исследовании 139]. Фундаментальные исследования, проведенные Ф.Г. Унгером [11Г включающие применение метода электронного парамагнитного резонанса (ЭПР), позволили установить, что понятия парамагнетизм и асфальтены [c.71]

    Однако еще многое остается недостаточно изученным. С практической точки зрения имеется обширное ноле деятельности по созданию лучших катализаторов, которые позволят значительно понизить образование кокса или обеспечат нротекапие таких реакций, в результате которых будут но-лучаться продукты особых качеств. С теоретической точки зрения ще многое предстоит сделать для выяснения кинетики и механизма процесса. Эта теория в применении к объяснению инициирования крекинга нафтеновых и парафиновых углеводородов имеет ряд неясных мест. Кроме того, опубликовано еще очень мало данных но многим отдельным стадиям цепи карбоний-ионных реакций. Нуждается в развитии также и количественная сторона теории карбоний-ионов. Несомненно, нри детальном изучении реакций крекинга большую пользу должны принести исследования, проводимые с соединениями, содержащими радиоактивный углерод или тяжелый изотоН углерода. Начало исследованиям в этом направлении положили Мак-Магон [65], изучавший образование кокса из радиоактивных парафиновых углеводородов, и Клименок с сотрудниками [60], которые установили лишь незначительный обмен между радиоактивным метаном (или этаном) и олефиновыми углеводородами, а также Андреев с сотрудниками [2], изучавшие крекинг -гексана в присутствии радиоактивного этилена. [c.459]

    На основании данных о поведении различных индивидуальных углеводородов предпринимались попытки выяснить в деталях механизм каталитического крекинга. Хансфорд [31] выдвинул гипотезу о ионном механизме, протекающем с участием карбоний-ионов и карба-нионов, но в последующем отказался от представления об участии кар-банионов и выдвинул механизм, полностью основывающийся на реакциях карбоний-ионов [32]. Примерно в то же время аналогичные гипотезы выдвинули Томас [63] и Гринсфельдер, Бог и Гуд [29]. В настоящее время механизм карбоний-иона находит широкое (хотя и не единодушное) признание как механизм, наиболее удовлетворительно объясняющий различные реакции, протекающие при каталитическом крекинге. Однако, как было недавно отмечено в литературе [66], существуют еще отдельные неясные моменты, по которым требуются дополнительные сведения для возможности создания количественной теории процесса каталитического крекинга. Важнейшие уязвимые места ионного механизма в его современном виде заключаются в недостаточности достоверных данных о механизме 1) инициирования крекинга исходного парафинового углеводорода 2) образования ароматических углеводородов из углеводородов нормального строения 3) дегидрирования некоторых нафтено-ароматических углеводородов (например, тетралинов) с образованием ароматического углеводорода и молекулярного водорода. Кроме того, еще не удалось полностью объяснить реакции, приводящие к образованию кокса последнее, вероятно, связано с указанными выше в пп. 2 и 3 реакциями. [c.139]

    Переходя к изложению современных концепций по вопросу об образовании кускового кокса, необходимо в первую очередь в нескольких словах остановиться на теориях, базирующихся на исходной структуре углей. Действительно, казалось бы логичным базировать теорию процесса коксования на той основе, что каменные угли представляют собой сложные органические системы, обладающие коллоидными свойствами. Коллоидная теория спекания сводит процесс образования пластической массы угля к явлениям его пептизации и сольватизации, а процесс последующего затвердевания к коагуляции при разложении дисперсионной среды. Некоторые подробности этой теории уже были кратко приведены в главе И. [c.405]

    Поэтому теория или гипотезы образования кокса, которые детально рассматривают все стороны процесса образования последнего, заслуживают наибольшего внимания. Здесь в первую очередь необходимо изложить интересные мысли, высказанные Л. М. Сапожниковым в теории склеивания , которая хотя и имеет несколько компромиссный характер между теориями цементации Мотта и теорией полного плавления Стадникова, но благодаря насыщенности фактическим материалом как исслг- [c.411]

    Прежде чем перейти к развитию наших представлений о структуре коксов необходимо кратко изложить теории, ранее иредложеюше для объяснения процесса образования структуры кокса из смесей углей, особенно первой его стадии — спекаемости углей. [c.205]

    Согласно современным воззрениям на происхождение нефти, считается доказанным, что первичным процессом является образование протонефти или материнского вещества нефти при анаэробном биохимическом цревращении животных и растительных остатков в смеси с глиной, песком, известковыми отложениями и другими породами. Восстановительная среда, создающаяся при таких условиях, способствует биохимическому превращению, которое, по мнению Стадникова [1], протекает в сторону декарбоксилирования полимеризатов жирных кислот, декарбоксилирования гуминовых кислот, растворенных и диспергированных в смеси ВОСКОВ, смол и неизмененных жирных кислот в виде гомогенной полужидкой массы. Теория Берля [2] возникновения протонефти при щелочном гидролизе целлюлозы под действием щелочей и карбонатов несомненно также указывает направление, по которому может протекать процесс образования нефти. Однако эти теории, освещая первую стадию процесса нефтеобразования, не дают возможности объяснить дальнейшее превращение органического вещества в продукты, составляющие нефть. Предположение Берля [2] о восстановлении протонефти водородом, образующимся при действии воды на закись железа или сернистое железо, не было экспериментально подтверждено. Протонефть Берля, жидка часть которой содержала спирты, кетоны и непредельные соединения, образовывалась при температурах выше 300° при более низких температурах процесс не шел в сторону образования не растворимых в водо продуктов. Целый ряд фактов неопровержимо свидетельствует о том, что нефтеобразование могло протекать при температурах порядка 150—250°. Присутствие в нефти порфиринов, неустойчивых свыше 250°, обнаруженная Трайбсом [3] оптическая активность отдельных нефтяных фракций, исчезающая при высоких температурах вследствие рацемации [4], отсутствие в нефти фенолов, кислот, непредельных соединений [4, 5], кокса или обуглероженных остатков [6], исключающее возможность пирогенетических превращений, заставляют предполагать наличие особых процессов, протекающих в области низких тедшератур. [c.260]

    Из наблюдения за поведением угля при коксовании Сапожников приходит к выводу, что у углей различных типов процесс спекания идет разными путями. Жирные, малоусадочные угли действительно при нагревании дают однородную жидкую массу с высокой степенью дисперсности твердой фазы. Возможно, говорит Сапожников, что в этом случае процесс спекания соответствует теории плавления с растворением одних частей угля и диспергированием других в полученном растворе. Но и в случае жирных углей частицы дюрена полностью не растворяются в витрене. Другие угли, например газовые, спекаются по схеме теории цементации. Однако основная масса коксующихся углей спекается путем склеивания размягченных в пластическом периоде угольных зерен по поверхностям соприкосновения, причем этому склеиванию способствует давление распирания, действующее изнутри угольных зерен и приводящее к более тесному контакту их между собой. По Сапожникову, вся эта масса углей не охватывается ни теорией цементации, так как при спекании таких углей их зерна не представляют собой твердых частичек и на поверхности их не образуется жидкости в количествах, достаточных для цементации, ни теорией плавления (с последующим растворением или диспергированием), так как при коксовании эти угли не проходят стадии образования однородной жидкой массы . [c.412]

    Наиболее распространенной теорией огнезащиты целлюлозы является теория каталитической дегидратации. Многочисленные исследования по огнезащите целлюлозных материалов показали, что введение в целлюлозу антипиренов приводит к дегидратации целлюлозы с образованием значительного количества карбонизованного остатка. Повышенный выход кокса снижает количество тепла, выделяемое целлюлозным материалом в процессе горения, тем самым подавляя процесс воспламенения и распространения пламени. Процесс дегидратации целлюлозы в основном катализируют кислоты, выделяющиеся при разложении антипиренов, а также кислоты и основания Льюиса. В этом отношении наиболее эффективны фосфорсодержащие антипирены. Механизм их действия довольно сложный. Предполагают [36 37], что фосфорсодержащие соединения или продукты их разложения в процессе пиролиза вначале взаимодействуют с целлюлозой с образованием сложных эфиров, а в дальнейшем происходит пиролиз новых производных целлюлозы, сопровождающийся процессом деполимеризации и [c.357]


Смотреть страницы где упоминается термин Теория процесса образования кокса: [c.59]    [c.466]    [c.95]    [c.236]    [c.21]   
Смотреть главы в:

Прикладная химия твердого топлива -> Теория процесса образования кокса




ПОИСК





Смотрите так же термины и статьи:

Кокс Сох

Коксо газ

Образование кокса

Образования пар процесс



© 2025 chem21.info Реклама на сайте