Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система, работающая под давлением 2,5—5,5 ат

    Регулирование работы центробежных компрессоров, т. е. изменение основных параметров (давления нагнетания и производительности), осуществляется с целью обеспечения их значений на определен)юм уровне. Процесс регулирования сводится к поддержанию в системе заданного давления или к сохранению неизменного расхода. [c.186]

    Рассмотрим идеальный процесс разделения исходной смеси на фракции. На рис. 7.2 показана схема идеального устройства для разделения смеси на фракции, включающие соответственно А/ компонентов (А,-ей). В отличие от схемы полного разделения, полупроницаемые мембраны установлены на входе в приемные камеры и обеспечивают обратимое смешение компонентов фракции. Температура во всех элементах системы одинакова. Давления в камерах также одинаковы и равны давлению исходной смеси. Мембранные парциальные давления р, и Ра соответствуют условиям мембранного равновесия чистого вещества и смесей в соответствующих камерах, затраченная извне минимальная работа разделения п молей исходной смеси на фракции с числом молей п,- определится как сумма затраченных работ обратимого изотермического сжатия чистых газов от их мембранных парциальных давлений р,, соответствующих равновесию с исходной смесью, до аналогичных характеристик Ра, равновесных газовым фазам фракций. Для одного моля исходной смеси минимальная работа разделения на фракции определится суммой [c.233]


    Величина работы, как и количество теплоты, есть количественная характеристика энергии, переданной от одной системы к другой. Если в случае теплоты передача энергии осуществляется путем столкновений молекул с поверхностью раздела систем в результате хаотического движения, то при работе передача энергии осуществляется путем упорядоченного движения большого числа частиц системы под действием каких-либо сил. Например, при расширении газа в цилиндре с поршнем молекулы будут иметь составляющую перемещения в направлении движения поршня под действием давления в системе (работа будет совершаться системой против внешнего давления). [c.188]

    Тип генератора А Й О X А 4 0) ь 5 ё у аЧ С ш Система работы Давление в кГ/см h л О П СО о о R си Ь S S i ES л J2 lii a Ч a g a S Sg П 4 =f Выработка ацетилена Г абарит-ные размеры в мм Бес в кг са ва S 4 о 3 5 g s g Uiv дО i Ч и u o E ai la [c.104]

    При одновременной работе двух технологических линий и срабатывании общей аварийной программы (в случае отключения электроэнергии п других производственных неполадок) происходил сброс этилена одновременно с обеих систем в количестве от 15 до 24 т в течение 4—6 мин. Общий объем одной системы высокого давления, из которой сбрасывался газ. составлял 30,8 м . Факельные трубопроводы низкого и высокого давления предназначены были также для продувок оборудования азотом ири подготовке его к пуску и от этилена нри подготовке его к ремонту. Общее количество разовых газовых сдувок в факельную линию низкого давления составляло около 140 м . [c.204]

    Т. е. изменение энтальпии равно сумме изменения внутренней энергии (А.и) и совершенной системой работы расширения (РДК). Если при этом никакие другие виды работы не совершаются, то АН — Ор, где Qp — тепловой эффект реакции, протекаюш,ей при постоянном давлении. Для экзотермической реакции Ор < О, для эндотермической Ор > 0. [c.74]

    Значительная доля вредных веществ поступает в атмосферу при сжигании газа на факельных установках. В практике эксплуатации объектов нефтегазового комплекса применяют факельные системы низкого давления, которые обслуживают установки, работающие под давлением до 0,2 МПа и высокого давления - выше 0,2 МПа а также локальные аварийные установки, которые работают под низким давлением, исключающим прием газов в газгольдер. Факельные установки для сжигания некондиционных газовых и газоконденсатных смесей, образующихся при работе оборудования или аварийных сбросах, представлены в работах [9-11]. Принципиальные схемы сброса газов и паров приведены на рис. 1.3, 1.4 [6]. [c.14]


    Изучение работы АСР. Управление системой регулирования давления в автоматическом и ручном режиме. [c.287]

    Давление. В процессах гидрогенизации вне зависимости от характера перерабатываемого сырья значительную роль играет парциальное давление водорода, которое с учетом давления паров и газов, полученных в процессе гидрогенизации, на 5-8 МПа ниже общего давления в системе. Повышение давления водорода сдвигает обратимые реакции гидрирования, несмотря на то что они протекают при относительно высоких температурах (440-480 С), в сторону образования соединений, наиболее насыщенных водородом. Это обстоятельство используют на практике с целью обогащения водородом исходного сырья, для гидрирования высокомолекулярных соединений, а также веществ, содержащих серу, кислород и азот. При повышенном давлении водорода уменьшается образование продуктов уплотнения. В конечном итоге давление водорода в системе, влияющее на глубину превращения исходного сырья, нужно определять с учетом химического состава исходного сырья, активности катализатора, продолжительности его работы и стои.мости, а также принимая во внимание характер получаемых продуктов. [c.131]

    Существует другой способ интерпретации первого закона, имеющий особо важное значение для химии. Будем рассматривать уравнение (15-1) просто как определение некоторой функции, называемой внутренней энергией Е. Напомним, что при нагревании газа он может совершать работу (см. подпись к рис. 15-2), но можно и обратить этот процесс, т.е. совершать работу над газом, сжимая его, и при этом отводить теплоту, выделяемую газом. Наконец, если нагревать газ, не давая ему выполнять работу, то в этом случае происходит повышение температуры газа. И наоборот, если позволить газу, находящемуся под высоким давлением, расширяться и совершать работу, не нагревая его, то в таком процессе обнаруживается охлаждение газа. Подбирая требуемые условия, удается манипулировать величинами дат независимо. За тем, что происходит в каждом случае, удобно следить, если определять изменение внутренней энергии, АЕ, как разность между добавляемым в систему количеством теплоты и выполненной системой работой, как это следует из уравнения (15-1). Если при добавлении в систему некоторого количества теплоты система выполняет в точности эквивалентную работу, внутренняя энергия системы остается неизменной. Когда мы нагреваем газ, но ограничиваем его объем, лишая газ возможности расширяться и вьшолнять работу, внутренняя энергия газа возрастает на величину, равную поступившему в него количеству теплоты. Наконец, если мы используем газ для совершения работы, не поставляя в него теплоту, внутренняя энергия газа уменьшается на величину, равную выполненной работе. Наши обьщенные наблюдения относительно того, что в одних из этих случаев газ нагревается, а в других охлаждается, указывают на связь внутренней энергии и температуры газа. [c.15]

    Заметим, что давление определяется массой груза на поршне. При уменьшении этого груза давление немедленно уменьшается, так как по третьему закону Ньютона действие равно противодействию. По этой причине самая большая из всех возможных работа получится, когда груз и давление газа будут почти такие, как при равновесии. Если груз больше, чем при равновесии, то пойдет процесс сжатия, для которого потребуется затратить работу. Таким образом, при равновесном процессе получаемая от системы работа будет максимальной. Но этот же процесс одновременно является и обратимым. Если же процесс не равновесен, то он и не обратим. Действительно, в случае неравновесного процесса от данной системы будет получена работа, меньшая максимальной, а для совершения обратного процесса придется использовать давление больше равновесного. Поэтому работа внешних СИЛ в обратном процессе будет больше работы [c.58]

    Задание. Найдите работу расширения I моль идеального газа при постоянном объеме системы, постоянном давлении, постоянной температуре и в адиабатическом процессе. Используйте общее уравнение (2.1), уравнение состояния идеального газа и первый закон термодинамики. [c.65]

    Кроме того должны быть указаны общие правила поведения работйющи в условиях аварийного режима и при авариях, правила аварийной остановки производства, общие правила обслуживания движущихся механизмов, работ на высоте, на системах высокого давления, передавливания жидкостей и др. Указывается порядок обеспечения спецодеждой и другими защитными средствами в зависимости от характера работ, порядок хранения и обезвреживания спецодежды и правила пользования средствами индивидуальной защиты. [c.253]

    Работу можно получить лишь путем выравнивания перепадов каких-либо параметров системы (температуры, давления, электрического потенциала, концентрации и др.), [c.75]


    Теплота считается положительной, если она подводится к системе А.и — приращение внутренней энергии системы равно разности между значениями внутренней энергии в конечном и начальном состоянии системы работа считается положительной, если она совершается системой. Если из всех внешних сил на систему действует только внешнее давление Р, то при переходе системы из состояния 1 в состояние 2 обратимым путем работу расширения можно вычислить по уравнению [c.7]

    Работа с манометром проводится следующим образом. Сосуд 13 наполняют тщательно очищенной ртутью и соединяют трубку 1 с системой, давление газа в которой требуется измерить. Трубку И трехходового капиллярного крана /О соединяют с вакуумным насосом. Включив насос, эвакуируют прибор при этом одновременно эвакуируется пространство над ртутью в сосуде 13 и ртуть в манометрической трубке 9 поднимается. После установления в системе заданного давления (уровень ртути должен находиться на отметке 14) в сосуд 13 впускают воздух через трубку 12 крана 10. Ртуть в трубке 9 медленно поднимается до.отметки 5, нанесенной на капилляре 3 на- уровне верхнего конца капилляра 2. Отмечают разность уровней ртути (А) в капиллярах 2 и 3. [c.33]

    При перекачке топлива по топливной системе на отдельных ее участках давление, под которым находится топливо, может быть даже меньше внешнего атмосферного давления. Следовательно, для определения высотности топливной системы необходимо сопоставлять давление насыщенных паров топлива не с атмосферным давлением, а с наименьшим давлением, под которым находится топливо в топливной системе. Таким давлением является давление на входе в топливный насос (р )- Если давление насыщенных паров топлива (Рндс) ньше, чем давление на входе в насос, то заметной кавитации нет и насос работает нормально. Если давление насыщенных паров топлива равно или больше, чем давление на входе в насос, то возникает кавитация, производительность насоса резко уменьшается, прокачка топлива нарушается. [c.53]

    Проходной изолятор изготавливают из шпекси-гласа для работы при температуре не выше 80° С, эбонита — не выше 105° С или фторопласта — до 160° С. По высоте электродегидратора имеются штуцеры для отбора проб нефти с различной высоты электродегидратора, а также карман для термопары и штуцер для манометра. Напряжение подается к нижнему электроду от высоковольтного трансформатора, верхний электрод заземлен, Электродегидратор помещен в специальную кабину, снабженную блок-контактом, обеспечивающим размыкание цепи при открывании дверцы кабины. Установка имеет отдельный щит, на котором установлены трансформатор (ЛАТР) для регулировки обогрева и подачи напряжения, потенциометры и магнитный пускатель с кнопкой. Напряжение к трансформатору печи для электрообогрева подается при помощи электрических потенциометров, автоматически регулирующих температуру в мешалке и электродегидраторе. Давление в системе регулируется клапаном, установленным на линии выхода нефти КЗ электродегидратора. Кроме того, на нагнетательной линии сырьевого насоса и на электродегидраторе установлены предохранительные клапаны, автоматически срабатывающие при увеличении в системе избыточного давления более 15 ат.  [c.80]

    Такие сиетемы проектируются в случаях, когда температура теплоносителя должна быть выше 100° С. Все оборудование находится под давлением, соответствующим температуре воды. Системы работают при искусственной циркуляции, создаваемой циркуляционным насосом или инжектором. [c.295]

    В парке сжиженных газов одного газоперерабатывающего завода произошел разрыв дренажной емкости с выбросом сжиженного газа и его воспламенением. Дренажная емкость предназначалась для сбора подтоварной воды из емкости со сжиженными газами и отпарки углеводородов она была рассчитана на работу под атмосферным давлением. Слив воды из емкостей со сжиженными газами в дренажную емкость предусматривался по проекту с разрывом струи через открытые воронки. Для уменьшения загазованности проектная схема была изменена. Сливные воронки ликвидировали, дренажный коллектор подсоединили к дренажной емкости. Схема дренирования стала закрытой. Рассчитанная на работу под атмосферным давлением дренажная емкость оказалась соединенной с системой высокого давления, а диаметр воздушника на емкости был определен без расчета, т. е. не исключалось возникновение избыточного давления в дренажной емкости. Вследствие неисправности спускного вентиля на одной из емкостей с пропан-пропнленовой фракцией в дренажную емкость поступило большое количество сжиженного газа под давлением 0,9 МПа, что и привело к ее разрыву. [c.133]

    На участке гидрогенизации цеха жирных спиртов была прекращена работа, так как нужно было отремонтировать насос высокого давления. Компрессор же для циркуляции водорода не выключили, и в системе поддерживалось давление 18—30 МПа. Компрессоры для подачи свежего водорода были остановлены, а всасывающая система трубопроводов компресс ора вместе с каплеотде-лителем находилась под давлением 3 МПа. При такой рабочей обстановке началась утечка газа через фланцевое соединение кап-леотделителя. После предварительного сброса давления в капле-отделителе до атмосферного дежурный слесарь по указанию старшего аппаратчика заменил старую прокладку новой. [c.193]

    Диаметры сливных трубопроводов предохранительных гндрозатворов 6, 7 рис. Х1-2) и вентиляционной трубы воздушника 2 были недостаточны и не обеспечивали нормального режима работы установки. Линия сброса сточных вод 10 не сообщалась с атмосферой, а на линиях I2, 13 не было гидравлических затворов. Ночью установка не работала, и подачу топливного газа отключали лишь вентилем / заглушку пе устанавливали. В ночь аварии давление газа в системе превысило давление столба жидкости в гидрозатворах б и 7, что при неплотности вентиля 1 привело к вмбросу жидкости из гидрозатворов. Газ проник через сборник со щелочью Н и трубопровод 9 в несооби1аюшпйся с атмосферой канализационный коллектор, а затем в канализационный стояк, не имевший гидрозатвора. Из стояка газ проник в производственное помещение. От газовой горелки в зданпп произошла вспышка, иосле чего последовало заго- )анпе газа. [c.248]

    Как было установлено, участо1К гидрогенизации производства первичных, жирных спиртов был остановлен для ремонта насосов высокого давления. Чтобы предотвратить оседание катализатора в реакторах, осуществляли циркуляцию водорода при помощи компрессора в системе поддерживали давление-1,8—30 МПа (175—300 кгс/см ). Комирессоры, предназначенные для подачи свежего водорода, не работали всасывающая система трубопроводов компрессора вместе с каплеотделителем находилась под рабочи.м давлением 3 МПа (30 кгс/см ). В системе была обнаружена утечка циркулирующего водорода через фланцевое соединение каплеотделителя. После сброса давления в капле-отделителе до атмосферного старую прокладку заменили новой. Перед установкой новой прокладки не была проведена зачистка уплотняющей поверхности фланцев (что подтвердилось В1Последс-твии наличием остатков старой проклад- [c.336]

    Поскольку вся система работает под давлением 17 кгс см -, на каждом из аппаратов, работающих попеременно (т. е. имеющих запорную арматуру до и после аппарата), устанавливают два предохранительных кла-наян и резервный). Расчет предохралитель- [c.39]

    Автоматическая защита центробежных компрессоров от помпажа недопускает работу компрессора при определенных давлениях воздуха на нагнетании. Учитывая зависимость давления помпажа от положения заслонки на всасе, автоматическое противопомпажное устройство оснащают системой, изменяющей давление срабатывания автоматического устройства в зависимости от производительности компрессора. Противопомпажные устройства регулируют так, чтобы они срабатывали при давлении на 10—15% меньше давления в начале помпажа. [c.176]

    Работу можно получить лишь путем выравнивания перепадов каких-либо парамет1ров системы (температур, давлений, электрических потенциалов, концентраций и т. п.) . [c.44]

    Недостатки проектирования ТА связаны со слишком большим или слишком малым запасом на размер поверхности теплообмена. Избыток поверхности теплообмена может привести к нарушенияем нормального функционирования аппарата. Для устранения избытка поверхности теплообмена в конденсаторах можно использовать хладоагенты с высокой температурой кипения или при работе охлаждающей системы повысить давление. В кипятильниках запас поверхности теплообмена устраняют уменьшением разности температур, составляющей движущую силу процесса. [c.119]

    Регулирование давления в колонне. Любая система, применяемая для контроля работы колонны, должна содержать средства контроля давления. На рис. 199 показано несколько схем контроля давления. На рис. 199, а представлена простейшая система контроля обратного давления наров из парциального конденсатора. В этом случае целью конденсации является получение рефлюкса. Точка отбора давления должна быть установлена на колонне или аккумуляторе рефлюкса. Для контроля давления можно использовать систему пропорционального отклика в сочетании с системой возврата в исходное положение. Возможно также применение системы пропорционального контроля с узкими пределами регулирования, так как колебания давления редко имеют критический характер. На рис. 199, б показана система регулирования давления [c.314]

    Термохимические исследования химических и других процессов удобно проводить при поддержании в системе постоянным давления. Подведение теплоты к такой системе будет вызывать в ней изменение внутренней энергии и производить работу расширения — PdV. Сумму этих переменных можно уже рассматривать как новую термодинамическую функцию Я (АЯ=А17+РА V). Новая функция Н называется энтальпией (от греческого слова баЯлОЗ — нагревание). Это наименование функции ввел в термодинамику физико-химик Каммерлинг-Оннес (1909 г.). [c.62]

    Регенерированный и восстановленный катализатор поступает в верхнюю часть первого реактора и проходит последовательно через все реакторы. Закоксованный катализатор освобождают в сепарационных устройствах от газа и паров продуктов и регенерируют в среде циркулирующего кислородсодержащего газа, а затем оксихлорируют, сушат и восстанавливают водородом. Единовременно регенерируются около 5% общей загрузки катализатора. Подобные установки могут сооружаться в два этапа сначала монтируют обычную установку риформинг с реакторами, внутренняя конструкция которых приспособлена для движения катализатора, на втором этапе - систему регенерации катализатора. При работе со стационарным слоем катализатора поддерживают более высокие давление и кратность циркуляции, после монтажа системы регенерации давление снижают. [c.161]

    Такой выбор обусловливается тем, что сжиженные газы являются главной компонентой опасностей на химических производствах. Системы под давлением включают в себя емкости под давлением, на которые обычно приходится большая часть системы, а также трубопроводы, клапаны, насосы и компрессоры, приборы и другие части. На рис. 6.1 показан диапазон давлений, характерный для химической и нефтехимической промышленности. Необходимо пояснить, почему в данной главе не рассматриваются более высокие значения давлений, чем показанные на рис. 6.1, хотя на первый взгляд они представляют большую опасность. Дело в том, что системы, которые работают при высоких давлениях, содержат значительно меньшее количество легковоспламеняющихся или токсичных веществ, чем системы, содержащие сжиженные газы. Частично это объясняется невозможностью сооружения емкостей диаметром в несколько метров, способных выдерживать необходимое давление. Разрыв емкостей под давлением может вызвать ряд серьезных последствий, которые, однако, могут быть быстро локализованы. Как отмечено в гл. 5 (см. тaбJr. 5.1), критические давления многих углеводородов имеют порядок 4 МПа, и из-за ряда причин, обсуждаемых в гл. 5, эти вещества хранятся как сжиженные газы при давлениях порядка 1 МПа. Это относится также к хлору и аммиаку. [c.87]

    Хотя хорошо спроектированная структура способна противостоять ветровой нагрузке, остается риск разрушения химического предприятия от землетрясения. Эта проблема обсуждается в книге [Waltham,1978]. Там приводится технический обзор с обширной библиографией по проблемам, связанным с землетрясениями, вулканическими извержениями, подвижками, оползнями и обвалами. Хотя в принципе все они могут сказаться на системах под давлением, приводимое ниже обсуждение сосредоточено на землетрясениях как на наиболее вероятной причине разрушения. Могут иметь значение и другие явления подвижек земной поверхности, не обсуждаемые в работе [Waltham, 1978]. Это таяние вечной мерзлоты - грунтов, которые постоянно заморожены в отсутствие человеческой деятельности и представляют собой хорошие фундаменты. Однако при передаче им тепла от предприятия они превращаются в грязь. [c.110]

    Отрегенерированный и восстановленный катализатор периодически загружается в реактор / ступени и затем последовательно проходит все реакторы. Транспорт между реакторами осуществляется ВСГ. Из последнего реактора катализатор поступаете бункер-накопитель, где отделяется от пневмоагента. Из бункера-накопителя катализатор периодически ссыпают в регенератор, где в неподвижном слое проводится окислительная регенерация и иные операции по подготовке катализатора к работе в цикле реакции. Единовременно регенерируется 5% общей загрузки катализатора. Система циркуляции катализатора использована Французским институтом нефти в процессе риформинга, а также при осуществлении процесса аро майзинг. Подобные установки могут сооружаться в два этапа [256] сначала монтируют обычную установку риформинга с реакторами, внутренняя конструкщгя которых приспособлена для движения катализатора, на втором этапе монтируют систему регенерации катализатора. При работе со стационарным слоем катализатора поддерживают более высокое давление и более высокую кратность циркуляции, после монтажа- системы регенерации давление снижают. [c.141]

    Система стабилизации давления на выкиде насоса может бьггь использована на установках, требующих высоких технологических рабочих параметров и ориентированных на стабильную работу привода. [c.9]

    Система работает следующим образом (см. рис. 4-15). Входные параметры системы защиты Р (давление в реакторе) и С (расход конденсата из обратного холодильника) контрцлируются соответствующими измерительными преобразователями (ИП). [c.215]

    В качестве катализатора обычно применяют трехокись молибдена, нанесенную на активную окись алюминия (5—10% MoOg). Вместо трехокиси молибдена можно применять окислы других металлов VI группы периодической системы. Рабочее давление составляет 3—25 ата (обычно около 15 ата), причем парциальное давление водорода равняется 40—90% общего давления. Этот водород получают из газов, выделяющихся в процессе, причем остаточный газ используют как топливо или как химическое сырье. Обычно работают в интервале 480—550°. Процесс проводят циклически и через каждые несколько часов регенерируют катализатор. [c.243]

    Системы состоят из ряда датчиков, преобразующих информацию о расходе воздуха, давлении, температуре, положении дроссельной заслонки и некоторых других данных о состоянии двигателя в электрический сигнал. Все сигналы с датчиков поступают в блок синтеза информации (БСИ), где они преобразуются в командный импульс определенной длительности. Управление впрыскиванием топлива осуществляется, как и в большинстве систем с электронным управлением, путем изменения длительности электрического импульса, посылаемого Б электромагниты форсунок. Система работает от электросети автомобиля и, как правило, содержит блок электроснабжения со стабилизаторами и защитой от резких изменений напряжения, которые могут вызвать необратимые повреждения электронных устройств. [c.91]

    В то время как энергия U — есть функция состояния системы и мы можем, следовательно, говорить о запасе ее в каждом состоянии системы, теплота Q и работа W не являются таковыми и имеют смысл характеристик конкретного процесса. Бессмысленно говорить о запасе теплоты или работы в системе. Действительно, обращаясь к примеру перевода 1 моль водорода из Л в В (см. рис. 1.1), легко показать, что этого можно достичь таким путем, при котором совершенная системой работа будет близка к нулю. Для этого сначала охладим газ, поддерживая Va = onst, до такой низкой температуры, что его давление станет близким к нулю. Затем, при этом давлении повысим температуру газа так, что его объем возрастет до конечного объема Vb- Потом, при Vs = onst нагреем газ до температуры, соответствующей состоянию В (0°С). В результате этого трехстадийного процесса газ перейдет из Л в В. В первой и третьей стадиях процесса совершаемая газом работа равна нулю, так как объем его остается при этом постоянным. Во второй стадии работа газа также почти равна нулю, так как давление газа при этом близко к нулю. Следовательно, газ, переходя из Л в В, практически не совершает работы. [c.12]

    По взаимной договоренности между НГДУ Арланнефть и б. заводом Искож , ныне вошедшим в состав АО Ис-кож , в 1979 г. была построена и пущена в эксплуатацию система использования сточных вод АО Искож для поддержания пластового давления при разработке Арланского месторождения. В частности, для этой цели был выбран Аки-неевский опытный участок Николо-Березовской площади. С начала эксплуатации по настоящее время эта система работает достаточно надежно без особых осложнений и обеспечивает суточную закачку воды в количестве 3,5— [c.338]


Смотреть страницы где упоминается термин Система, работающая под давлением 2,5—5,5 ат: [c.288]    [c.38]    [c.301]    [c.128]    [c.176]    [c.168]    [c.72]    [c.321]    [c.65]   
Смотреть главы в:

Технология азотной кислоты Издание 3 -> Система, работающая под давлением 2,5—5,5 ат




ПОИСК





Смотрите так же термины и статьи:

Давление в системе



© 2025 chem21.info Реклама на сайте