Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние растворителя на равновесие Химическое равновесие и температура

    Реакции в жидкой фазе могут протекать и в условиях ограниченной взаимной растворимости жидких компонентов. Если при этом существует одна или две (верхняя и нижняя) критические температуры растворения, то следует иметь в виду, что давление оказывает влияние как на величину растворимости, так и па эти критические температуры. Известно, например, что увеличение давления с атмосферного до 1000 атм повышает критическую температуру растворения смеси фенол — вода с 66 до 71°. Рассмотрим в связи с этим случай, когда в реакции участвует вещество, растворенное в обеих несмешивающихся или ограниченно растворимых друг в друге жидкостях. Для установления величины активности этого вещества в любой из фаз воспользуемся известным положением о равенстве значений химического потенциала вещества во всех фазах, находящихся в равновесии. Отсюда следует, что отношение активностей вещества в обеих смесях при постоянной температуре должно быть постоянным (закон распределения). С изменением давления над раствором активность растворенного вещества будет изменяться в соответствии с уравнением (I. 49). Значения парциальных мольных объемов его VI в различных растворителях могут оказаться разными, что приведет к различному росту активностей растворенного вещества в обеих фазах. Но эти активности, согласно закону распределения, должны быть при равновесии всегда пропорциональны друг другу следовательно, при высоком давлении будет происходить переход вещества из одной фазы в другую. [c.43]


    Предприняв термодинамическое исследование ряда гальванических элементов в неводных растворах, Л. В. Писаржевский сумел впервые в физической химии дать строго обоснованные выводы по влиянию растворителя на константу равновесия химического процесса. Эти исследования привели Л. В. Писаржевского к выводу о том, что химическая природа растворителя оказывает на равновесие гораздо большее влияние, нежели температура. [c.174]

    Объектом исследования химической кинетики является химический процесс превращения реагентов в продукты. Можно возразить, что химическая реакция является предметом исследования и ряда других химических дисциплин, таких как синтетическая и аналитическая химия, химическая термодинамика и технология. Следует отметить, что каждая из этих дисциплин изучает химическую реакцию в своем определенном ракурсе. В синтетической химии реакция рассматривается как способ получения разнообразных химических соединений. Аналитическая химия использует реакции для идентификации химических соединений. Химическая термодинамика изучает химическое равновесие как источник работы и тепла и т. д. Свой специфический подход к химической реакции имеет и кинетика. Она изучает химическое превращение как процесс, протекающий во времени по определенному механизму с характерными для него закономерностями. Это определение нуждается в расшифровке. Что именно в химическом процессе изучает кинетика Во-первых, реакцию как процесс, протекающий во времени, ее скорость, изменение скорости по мере развития процесса, взаимосвязь скорости реакции с концентрациями реагентов - все это характеризуется кинетическими параметрами. Во-вторых, влияние на скорость и другие кинетические параметры реакции условий ее проведения, таких как температура, фазовое состояние реагентов, давление, среда (растворитель), присутствие нейтральных ионов и т. д. Конечный результат таких исследований - количественные эмпирические соотношения между кинетическими характеристиками и условиями проведения реакции. В-третьих, в кинетике изучают способы управления химическим процессом с помощью катализаторов, инициаторов, промоторов, ингибиторов. В-четвертых, кинетика стремится раскрыть механизм хи- [c.15]

    Скорость реакции каталитической гидрогенизации в растворах в сильнейшей степени зависит от величины адсорбции реагирующих веществ на поверхности катализатора. При этом соотношения концентраций на поверхности в момент реакции определяются скоростями активации водорода на поверхности и скоростью его снятия непредельным соединением. В зависимости от природы растворителя меняется коэффициент распределения растворенного непредельного соединения между раствором и поверхностью катализатора. В результате этих часто противоположных влияний на поверхности катализатора устанавливается в ходе процесса известное, временное равновесие, которое определяет лимитирующую стадию реакции. Для того чтобы установить механизм реакции в данных условиях и обнаружить лимитирующую стадию реакции, требуется обычно проведение длительных кинетических опытов, в которых исследуется влияние концентрации реагирующих веществ, продуктов реакции, температуры и природы растворителя на скорость реакции. При этом все же получаются не всегда однозначные выводы. Вместо этого можно измерять потенциал катализатора во время реакции и на основании этого сразу же получить представление о степени заполнения поверхности катализатора водородом и непредельным соединением [1]. В случае необходимости могут быть приняты меры для повышения активности катализатора как за счет изменения химического состава катализатора, так и за счет изменения природы растворителя или внесения в раствор солей, кислот и оснований. [c.153]


    Хотя положение равновесия не зависит от концентраций исходных веществ, но от этого зависит скорость реакции. Эта зависимость в истории кинетики гомогенных органических реакций (как и вообще в истории химической кинетики) и была изучена в первую очередь. Далее исследователи обратили внимание на то, что скорость реакции зависит и от природы исходных веществ. На третье место можно поставить изучение влияния на скорость реакции среды — растворителя и примесей или добавок, обладающих каталитическим действием, причем и растворитель в некоторых случаях может выступать в роли катализатора. Наконец, позднее всего удалось выяснить природу давно известного влияния температуры на скорость реак- [c.144]

    Таким образом, если химик хочет провести какую-либо химическую реакцию, он должен подобрать не только соответствующие реагенты, реакционные сосуды и температуру реакции одно из важнейших условий, необходимых для успешного осуществления реакции, — это выбор подходящего растворителя. Поскольку сам факт влияния растворителей на химическую реакционную способность известен уже более столетия, подавляющее большинство современных химиков знает о влиянии растворителей на скорость реакции и положение равновесия. Сегодня в распоряжении химика имеется около трехсот растворителей, не говоря уже о практически бесконечном разнообразии их смесей. Очевидно, выбрать соответствующий растворитель из такого многообразия непросто, для чего химику необходимы не только интуиция, но и знание некоторых общих правил и лринципов их подбора. [c.10]

    Адсорбция газов электродами и диспергированными твердыми телами происходит под влиянием физических и химических сил притяжения, действующих на поверхности этих тел. Подобным же образом, если раствор привести в контакт с твердым телом, в случае инертного растворителя возможна адсорбция растворенного вещества. К силам, ответственным за физическую адсорбцию, относятся дисперсионные (лондоновские) силы, короткодействующее отталкивание и дипольные силы в твердых телах теплота реакции имеет тот же порядок величины, что и теплота конденсации газов, т.е. приблизительно от 1 до 10 ккал моль . В случае хемосорбции происходит переход электронов между твердым телом и адсорбированным слоем, в котором принимают участие силы валентности, и теплота этого процесса фавнима с теплотой химических реаидда (10-100 ккал моль 1). Физическая адсорбция обратима, тогда как химическая необратима. Как в случае адсорбции газа, так и в случае адсорбции из раствора количество адсорбированного вещества на грамм твердого тела зависит от природы адсорбента и адсорбата, условий равновесия, включая температуру, давление, концентрацию. Физическая адсорбция газов на твердых телах максимальна вблизи точки кипения адсорбатов. Это обстоятельство широко используется для измерения поверхности и структуры пор в электродах. Химическая адсорбция в большинстве случаев происходит при таких значениях температуры, давления и соотношениях адсорбата и твердого тела, при которых можно ожидать начала химической реакции между адсорбатом и поверхностью твердого тела. Согласно Зммету [1], "химическая адсорбция имеет место в процессе посадки водорода на металлы, азота на поверх- [c.303]

    Принщ1п подвижного равновесия позволил определять направление реакций при равновесиях, дал возмоншость глубже понять природу различных веществ, связывая их свойства с теми процессами, при которых они образуются. На основе изучения химического равновесия впервые было обращено большое внимание на зависимость хода и результата реакций от влияния таких факторов, как химическая масса, природа растворителя, температура, давление, и других внешних условий. Выяснение этой зависимости открывало плодотворнейшее поле исследований по химической кинетике. [c.336]

    Из выражений (5.18) и (5.19) следует, что значение К зависит от температуры, давления и природы растворителя (влияют на величину К°), а также от ионной силы раствора (влияет на величины у), а. К, кроме того — и от глубины протекания конкурирующих реакщш (влияет на величины а). Таким образом, реальные константы характеризуют положение равновесия с учетом влияния электростатических взаимодействий, а условные константы — с учетом суммгфного влияния электростатических и химических взаимодействий. [c.106]

    КОН степени смещен в область сильного поля, что оба сигнала перекрываются. Спектры ЯМР и диаграммы температур застывания системы пиррол — ацетилацетон [80] указывают на образование слабого комплекса за счет водородных связей пиррола с карбонильным кислородом кетоформы ацетилаиетона. Возможно образование как 1 1, так и 1 2 комплексов. Использование метода двойного резонанса [46] позволило изучить влияние растворителей как на водород НН-, так и на водороды СН-групп. Разбавление пиррола циклогексаном смещает все сигналы в сторону слабого поля, причем наибольший сдвиг претерпевает сигнал от водорода НН-группы, а наименьший — сигналы от р-водородов. Этого нельзя ожидать в случае разрыва связи ЫН Ы, однако оно вполне совместимо с уменьшением я-взаимодействия между НН-группой пиррола и я-электронной системой второй молекулы [81]. Это взаимодействие изменяет химические сдвиги сс- и р-протонов. Из сопоставления длин связей видно, что р-протоны расположены так далеко от донорного пиррольного кольца, что его влияние невелико. Из двух возможных циклических димеров, из которых один содержит два пиррольпых кольца, являющихся я-донорами, а другой состоит из одной свободной и одной ассоциированной НН-группы,— первый лучше согласуется с результатами ЯМР. При добавлении пиридина к циклогексановому раствору пиррола сигнал от НН-группы смещается в область более слабого поля. Этот сдвиг приписывают ассоциации НН Н, включающей неподеленную пару электронов атома азота пиридина. Константы равновесия этой ассоциации были определены из температурной зависимости величина ЛН равна — 4,3 ккал/моль, а изменение стандартной энтропии Д5° = —8,0 кал/моль, что согласуется со значениями, полученными из калориметрических измерений и данных ИК-спектров. [c.437]


    Основная задача теории ионообменной хроматографии состоит в определении оптимальных условий наиболее полного разделения компонентов анализируемой смеси веществ в зависимости от их концентрации в исходном растворе, размеров колонки, продолжительности проявления хроматограммы. Теория ионного обмена должна рассматривать ионообменное равновесие, факторы, усложняющие обмен, избирательность и специфичность ионитов, адсорбцию нейтральных солей, термодинамический аспект вопроса, скорость обмена, условия хроматографического разделения, на стадиях поглощения и элюирования, построение выходных кривых, влияние различных факторов (размера зерен, температуры, концентрации раствора, pH раствора, скорости протекания), влияние химического состава и валентности ионов, химического состава растворителя (неводные растворы), комплексообразования, адсорбцию и набухание, емкость ионитоз, их электрохимические свойства. [c.29]

    Значительное число мембран, используемых в качестве ультрафильтров, получают методом спонтанного студнеобразования. Как следует из рассмотренной выше диаграммы фазового равновесия (рис. 3.7), необходимым условием спонтанного студнеобразования является более высокая упругость паров растворителя по сравнению с упругостью паров нерастворителя. Факторами, определяющими структуру и свойства мембран, помимо химического состава полимера являются природа растворителя и нерастворителя, концентрация полимера в растворе, скорость испарения растворителя, температура, при которой происходит распад раствора на фазы. Закономерности процесса во многом сходны с закономерностями стадии предформования при получении мембран методом сухо-мокрого формования. Распад исходного раствора на фазы может быть зафиксирован по изменению оптической плотности системы [83]. Проведенные с помощью этого метода исследования показали, что кинетика спонтанного студнеобразования в системе ацетат целлюлозы — ацетон — вода существенно зависит от концентрации исходного раствора (рис. 3.14). На кинетику процесса оказывают влияние также молекулярная. масса полимера (рис. 3. 15), концентрация нерастворителя в системе (рис. 3. 16) и температура испарения (рис, 3.17). Обычно увеличению размера пор способствует снижение концент  [c.106]

    Выбор скорости и условий проведения процесса растворения является технологической задачей. Основной же физико-химической задачей, решаемой на данной стадии производства микрофильтров, является получение полностью совместимой и устойчивой во времени смеси растворителя и полимера. Совместимость и постоянство характеристик смеси полимера и низкомолекулярной жидкости зависят от химической природы (сродства) компонентов, их соотношения и внешних факторов (температура, механическое или гидромеханическое поле). Аналитического решения эта задача не имеет. Для описания систем полимер — низкомолекулярная жидкость (или жидкости) часто используют топологический метод анализа, сводящийся к построению диаграмм фазового равновесия. Принципы этого метода анализа будут рассмотрены при обсуждении проблем формования мнкрофильтров. В данном случае целесообразнее остановиться на подборе растворителей полимеров и влиянии некоторых характеристик растворов на свойства микрофнльтров. [c.25]


Смотреть страницы где упоминается термин Влияние растворителя на равновесие Химическое равновесие и температура: [c.82]    [c.239]    [c.184]    [c.681]    [c.61]    [c.130]    [c.141]    [c.154]    [c.230]    [c.76]    [c.203]   
Смотреть главы в:

Физическая химия Том 2 -> Влияние растворителя на равновесие Химическое равновесие и температура




ПОИСК





Смотрите так же термины и статьи:

Равновесие влияние температур

Химический ая ое температуры

Химическое равновесие

Химическое равновесие влияние

Химическое равновесие влияние температуры

Химическое равновесие температуры



© 2025 chem21.info Реклама на сайте