Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уравнение Шредингера и его решение

    Рассмотрим особенности метода МО ЛКАО на примере молекулярного иона Нг —самой простой из двухатомных молекул, содержащей один-единственный электрон. Для нее выполнено точное решение уравнения Шредингера. Оно дает значения и совпадающие с опытом. Это показывает, что принципиально уравнение Шредингера применимо для описания поведения электрона не только в атомах, но и в молекулах. [c.62]


    Совершенно иная картина получается при рассмотрении вопроса с квантово-механической точки зрения. Решение уравнения Шредингера для гармонического осциллятора приводит к системе волновых функций, которые являются математическим описанием состояния системы, и к ряду энергетических уровней, определяемых простым выражением  [c.294]

    Поскольку точное решение уравнения Шредингера для более сложных молекул, чем Нг, невозможно, возникли различные приближенные методы расчета волновой функции, а следовательно, распределения электронной плотности в молекуле. Наиболее широкое распространение получили два подхода теория валентных связен (ВС) и теория молекулярных связей орбиталей (МО). В развитии первой теории особая заслуга принадлежит Гайтлеру и Лондону, Слетеру и Полингу, в развитии второй теории — Малликену и Хунду. [c.46]

    Последнее уравнение называется стационарным уравнением Шредингера. Его решения 1 з (х, у, г) соответствуют состояниям системы, в которых энергия [c.51]

    Решение уравнения Шредингера в случае многоэлектронных орбит крайне затруднено из-за сложности аналитического выражения для волновой функции г]), поэтому применяются приближенные методы, одним из которых является метод линейной комбинации атомных орбит (ЛКАО) или метод молекулярных орбит Хюк-келя 137]. В этом методе волновая функция молекулярной орбиты предполагается равной линейной комбинации волновых функций атомных орбит [c.280]

    В соответствии с основными положениями квантовой механики движение электрона в атоме описывается уравнением Шредингера, решение которого для атома водорода вполне строго. Анализ этого решения показывает, что энергия электрона в атоме водорода характеризуется главным квантовым числом п. [c.185]

    Вариационный метод решения уравнения Шредингера [c.53]

    Наличие трех степеней свободы приводит к тому, что в решении уравнения (1.24) появляются три величины, которые могут принимать только целочисленные значения — три квантовых числа они обозначаются буквами п, I и т . Эти величины входят в выран<е-ния как радиальной, так и угловой составляющих волновой функции. В самом общем виде результат решения уравнения Шредингера для атома водорода можно выразить записью [c.21]

    Хотя проблема механической стабильности молекул может быть решена в принципе с помощью уравнения Шредингера, точные решения получены только для молекул Нз и Н+. Ниже будет рассмотрено несколько приближенных методов. [c.197]


    Это уравнение в видоизмененном и интегрированном виде вводится в уравнение Шредингера. Решение относительно Е дает  [c.56]

    В ВОЛНОВОЙ (или квантовой) механике электрон, как и любая микрочастица, описывается с помощью волновой функции. Его движение определяется уравнением, предложенным Шредингером, - знаменитым уравнением Шредингера. Решением этого уравнения является волновая функция f, которая соответствует разрешенной энергии электрона и описывает зависимость амплитуды стационарной волны, соответствующей электрону, от трех его пространственных координат. Квадрат волновой функции определяет вероятность пребывания электрона в некоторой пространственной области. Здесь мы как раз встречаемся со случаем точного знания энергии электрона и вероятностного описания его положения в пространстве. Во многих случаях удобно рассматривать электрон как размытое в пространстве облако отрицательного заряда. Плотность такого электронного облака в любой точке пропорциональна V. Модель электронного облака наглядно описывает распределения электронной плотности в пространстве, хотя она физически несовершенна, так как одноименно заряженные части облака должны отталкиваться друг от друга, вызывая его рассеивание. На самом же деле электрон не отталкивается сам от себя . Это обстоятельство несколько ограничивает аналогию между электроном и облаком, но не мешает нам говорить об электронных облаках во всех случаях, когда мы не интересуемся деталями, связанными с их потенциальной энергией. Представлением об электронных облаках мы будем широко пользоваться в этой книге. [c.27]

    Математическое исследование уравнения Шредингера показывает, что его решение возможно не при любом значении энергии Е. Только в случае некоторых, вполне определенных, значений Е можно найти такие функции г з, которые удовлетворяют уравнению Шредингера. Решение этого уравнения для атома водорода показывает, что [c.80]

    Иа уравнения Шредингера находят полную энергию системы Е и зависимость функции г) (и ф ) от координат, т. е. распределение электронной плотности. Решение уравнения Шредингера для атомов и молекул всегда приводит к определенному набору дозволенных значений Е. Таким образом, теоретически выводится известное из опыта квантование энергии. Примечательно, что этот ре-.зультат получается из уравнения (1.24), которое само не содержит набора каких-либо чисел. Найдя Е и х,у,г), можно вычислить любые определяемые экспериментально характеристики рассматриваемой системы. [c.19]

    Значение гармонического осциллятора как математической модели молекулы основано на двух фактах 1) эта модель является единственной колеблющейся системой, для которой может быть получено точное решение уравнения Шредингера 2) хотя ни одна реальная молекула не ведет себя подобно гармоническому осциллятору, почти для всех молекул эта модель является достаточно хорошим приближением, в особенности при небольшой энергии колебаний. [c.295]

    Однако макроскопические свойства системы могут быть выведены и иным путем — из анализа микроскопических свойств объектов и сил взаимодействия, существующих между ними. Наиболее простой и бесхитростный способ решения такой задачи состоит в том, чтобы, зная исходные данные (начальные условия), решить соответствующее уравнение связи для каждой частицы. Ситуация при этом носит достаточно общий характер — если объекты системы достаточно велики и подчиняются законам классической физики, то необходимо решать уравнения классической механики (Сравнения Ньютона) при знании начальных координат и импульсов каждого объекта если же речь идет о микрообъектах, подчиняющихся законам квантовой механики, то необходимо решать волновое уравнение Шредингера при знании начальных волновых функций и сил взаимодействия. Единственные затруднения такого прямолинейного анализа состоят в том, что, во-первых, число объектов в реальных системах весьма велико (например, при нормальных условиях Т = = 29.3 К, Р = 1 ат, в 1 см содержится N = 2,7-10 молекул — число Лошмидта, что означает необходимость решения 3-2,7-10 8-10 уравнений при 6-3-2,7 х X 10 5-10 значениях начальных условий) и, во-вторых, точные значения начальных условий неизвестны. Поэтому необходим иной подход [11]. [c.24]

    Функция Гейтлера — Лондона для молекулы Н2. Работа Гейт-лера и Лондона (1927) была основополагающей в области применения квантовой механики к химии, т. е. в области теории строения молекул. Эти ученые впервые нашли приближенное решение уравнения Шредингера для молекулы Нг, подойдя к ней как к системе, состоящей из двух атомов водорода. Использованная ими приближенная функция для молекулы На строилась из атомных орбиталей 15 каждого атома водорода. В нулевом приближении она имела вид, аналогичный функции для атома гелия (см. 9)  [c.54]


    Пусть адиабатический потенциал г Qi, Ск) нелинейной симметричной молекулы, являющийся формальным решением электронного уравнения Шредингера, имеет несколько пересекающихся в точке ветвей. (Для примера, на рис. 24 представлен случай двукратного вырождения, т. е. когда двум электронным состояниям Ф[ и Фг нелинейной симметричной молекулы отвечают в точке С одинаковые значения г , т. е. имеет место пересечение ветвей адиабатического потенциала). Тогда в этой точке потенциал не имеет минимума. Иными словами, для нелинейной симметричной многоатомной системы в случае электронного вырождения всегда найдутся такие ядерные смещения, для которых (дг дQ)Qo ф 0. [c.112]

    Атомы всех элементов, кроме водорода, многоэлектронные. Волновые функции и уровни энергии для них в принципе можно найти, решив уравнение Шредингера. Однако точное решение этого уравнения для многоэлектронных систем невозможно задача усложняется тем, что электрон движется-уже не в поле ядра, а в поле, создаваемом ядром и остальными электронами. Рассмотрим простейший из многоэлектронных атомов — атом гелия, состоящий из ядра (2=2) и [c.34]

    Строгое аналитическое решение уравнения Шредингера возможно только для одноэлектронных систем. В более сложных задачах применяют приближенные методы, которыми пользуется квантовая-химия. [c.20]

    При решении уравнения Шредингера в данном случае пользуются полярной систс-мой координат, центр которой совпадает с ядром атома (рис. 1.5). Если в прямоугольной (декартовой) системе координат положение частицы задается координатами х, у и 2, то в полярной системе оно оиределяется радиусом-вектором г (расстоянием частицы от центра системы координат) и углами 0 (угол широты) и ф (угол долготы). [c.21]

    Энергия электрона в атоме водорода зависит только от числа л решение уравнения Шредингера дает соотношение [c.26]

    Как видно, получается то же выражение, что и в теории Бора ( см. уравнение (1.18)], 1ю в отличие -от последней квантовая механика приходит к этому результату путем решения уравнения Шредингера, не прибегая к произвольному предположению о возможности движения электрона по определенному набору орбит, задаваемому рядом целых чисел. [c.26]

    Квантовомеханический подход к исследованию строения атома и молекулы один и тот же нужно составить и решить уравнение Шредингера для системы из электронов и ядер и дать физическую интерпретацию (истолкование) полученным решениям. Составляя уравнение Шредингера для электронной энергии молекулы [c.51]

    I. Решение уравнения Шредингера с использованием приближенных выражений волновых функций. Умножив обе части уравнения Шредингера (1.25) иа г 5 и перенеся Е в левую часть, получаем [c.74]

    Пример 4. В органической химии используется метод определения энергетических уровней молекулярных орбит, в основе которого лежит решение волнового уравнения Шредингера [37]  [c.279]

    Основное положение теории абсолютных скоростей химических реакций заключается в том, что всякий элементарный химический акт протекает через переходное состояние (активированный комплекс), когда в реагирующей системе исчезают отдельные связи в исходных молекулах и возникают новые связи, характерные для продуктов реакции. В теории абсолютных скоростей химических реакций можно выделить две основные задачи расчет поверхности потенциальной энергии элементарного акта и расчет вероятности образования и времени существования переходного состояния. Первая задача связана с решением уравнения Шредингера для системы частиц, образующих активированный комплекс. Эта проблема очень сложна и в настоящее время приближенно решается с помощью современных ЭВМ только для простейших реакций. Поэтому в основном теория развивается в поисках методов оценки энергии и энтропии образования активированного комплекса исходя из свойств реагирующих молекул. [c.568]

    Подстановка (21.21) и (21.22) в (21.1) приводит к двум решениям уравнения Шредингера для Нг к двум молекулярным орбиталям  [c.66]

    В квантовой механике для решения уравнения Шредингера применяются метод теории возмущений и вариационный метод. Второй метод широко применяется при рассмотрении химической связи. Здесь коротко излагается его сущность. Умножим обе части уравне- [c.53]

    Вопрос о теоретическом расчете геометрии молекулы весьма актуален, так как в настоящее время далеко не для всех молекул ее можно определить экспериментально, особенно для короткоживущих радикалов. Единственный строгий путь предсказания равновесной конфигурации — это решение уравнения Шредингера в возможно высоком приближении аЬ initio. Однако из-за трудности неэмпирических расчетов часто пользуются различными способами определения конфигурации, не имеющими строгого теоретического обоснования. Так, для этого используется концепция гибридизации в методе ВС. Зная валентные возможности центрального атома, представляют, какие гибридные эквивалентные орбитали он может образовать, и по аналогии со строением изученных соединений с той же гибридизацией ожидают соответствующую равновесную конфигурацию  [c.103]

    Эти орбитали ортогональны как решения одного и того же уравнения Шредингера  [c.66]

    Обе МО суть приближенные решения уравнения Шредингера, полученные вариационным методом. Из них одно с более низкой энергией (ф5) отвечает основному, второе ( л) —ближайшему высше.му по энергии состоянию. Рассмотрим подробнее выражения для энергии (21.19а) и (21.196). В них входят так называемые матричные элементы  [c.67]

    Волновая функция, являющаяся решением уравнения Шредингера, называется орбиталью. Соотношение волновых функций г() и 1 ) а также 4л для электрона с наименьшей энергие в атоме водорода но-Рис. 4. Волновые функции и плот- казано на рис. 4. Понятно, что иость вероятности для электрона ДЛЯ электрона С другой энерги-атома водорода с наименьшей энер- ей ВИД кривых буДеТ ИНЫМ, гией [c.14]

    Современные методы исследования позволяют экспериментально определить пространственное расположение в веществе атомных ядер. Как указывалось выше, согласно квантовомеханическим представ-ленилм можно говорить лишь о вероятности нахождения электронов II поле атомных ядер. Данному пространственному размещению атомных ядер отвечает определенное распределение электронной плотности. Выяснить, как распределяется электронная плотность, по сути дела, и означает описать химическую связь в веществе, но для. этого, как известно, необходимо точное решение уравнения Шредингера, что осуществлено только для иона Иг, состоящего из двух протонов и одного электрона. [c.41]

    Простейшей молекулярной моделью, рассматриваемой при исслед<1 вании вращательных уронней энергии, является жесткая линейная система точечных масс, которые прсдстанляют собой атомы. Решение уравнения Шредингера для такой системы приводит к следующему выражению дли уровней энергии  [c.306]

    Ковалентная связь. Метод валентных связей. Мы уже знаем, что устойчивая молекула может образоваться только при условии уменьшения потенциальной энергии системы взаимодействующих атомов. Для описания состояния электронов в молекуле следовало бы составить уравнение Шредингера для соответствующей системы электронов и атомных ядер и найти его решение, отвечающее минимальной энергии системы. Но, как указывалось, в 31, для мно-гоэлсктронных систем точное решение уравнения Шредингера получить не удалось. Поэтому квантово-механическое описание строения молекул получают, как и в случае многоэлектронных атомов, лишь на основе приближенных решений уравнения Шредингера. [c.119]

    Полученные Гейтлером и Лондоном (и впоследствии уточнен- ные другими исследователями) расчетные значения межъядерного расстояния и знергии связи в молекуле водорода оказались близки к экспериментально найденным величинам. Это означало, что нри ближения, использованные Гейтлером и Лондоном при решении уравнения Шредингера, не вносят суии стеенных ошибок и могун считаться оправданными. Таким образом, исследование Гейтлера и Лондона позволяло сделать вывод, то химическая связь в молекуле водорода осуществляется путем образования пары электронов с противоположно направленными спинами, принадлежащей обоим атомамДПроцесс спаривания электронов при образовании моле кулы водорода может быть изображен следующей схемой  [c.121]

    Возьмем далее вместо функции Ч ") , являющейся точным решением уравнения Шредингера, некую npo-извольную (или, как ее еще называют, пробную) функцию Ф. Впрочем, Ф не вполне произвольна, предполагается, что она зависит от тех же переменных й удовлетворяет тем же условиям, что и функции (в частности, ф полагается нормированной на 1). Тогда пробную функцию Ф можно разложить в ряд по собственным функциям гамильтониана Й  [c.68]

    Таким образом, результаты расчетов, выполненных по методу ОХФ, отличаются от результатов, полученных из точного решения нередятивистского уравнения Шредингера (разумеется, такие решения далеко не всегда известны). Эти отличия связывают с корреляционными эффектами, подразумевая под этим кулоновскую корреляцию. Так, электронная энергия, вычисленная в приближении ОХФ, отличается от истинной эл (которая может быть найдена экспериментально) на величину корр  [c.186]

    Физические причины образования связи между атомами удалось установить только после того, как стали известны законы движения микрочастиц — была создана квантовая механика. В 1927 г. (через год после опубликования уравнения Шредингера) появилась работа Гейтлера и Лопдона (Германия), посвященная квантовомеханическому расчету молекулы водорода. Эта работа поло->кила начало применению квантовой механики для решения химических проблем. Так получила развитие новая область науки — квантовая химия, решающая химические проблемы с помощью квантовой механики. Кратко рассмотрим принципы кваи-товохимнческих расчетов.  [c.74]

    Чтобы понять физический смысл симметричной и антисимметричной функций, вспомним принцип Паули. Согласно этому принципу в атомной или молекулярной системе не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковыми. Квантовые числа определяют вид волновой функции, характеризующей состояние электрона. Таким образом, согласно принципу Паули в одной системе не может быть двух электронов в одинаковом состоянии. Поскольку прн перестановке электронов симметричная функция не изменяется, то может показаться, что эти электроны находятся в одном и том же состоянии, а это противоречит принципу Паули. Однако получаемые решением уравнения Шредингера волновые функции атома водорода (1.45), из которых составлена функция (1.48), не учитывают спин электрона. Чтобы электроны в молекуле, состояние которых выражается симметричной (-функцией, отличались по состоянию, они должны иметь различные спиновые квантовые числа, т. е. эти электроны будут иметь противоположно направленные, или антипараллель-ные спины. [c.78]


Смотреть страницы где упоминается термин Уравнение Шредингера и его решение: [c.75]    [c.279]    [c.85]    [c.85]    [c.66]    [c.20]    [c.27]    [c.34]    [c.60]    [c.583]   
Смотреть главы в:

Теория молекулярных орбиталей в органической химии -> Уравнение Шредингера и его решение




ПОИСК





Смотрите так же термины и статьи:

Уравнение решения

Уравнения Шредингера

Шредингер



© 2025 chem21.info Реклама на сайте