Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теперь обобщим

    Теперь обобщим понятие требования полноты следующим образом в прямом ответе требование полноты всякий раз отражается в виде утверждения о полноте выбора, измеренной по отношению к общему числу истинных альтернатив, предоставляемых вопросом,— иначе говоря, в виде утверждения о том, какое количество истинных альтернатив из области вопроса содержится в выборе ответа. В данном контексте количество оценивается не числом, а кван-торным выражением типа все все, кроме одной 5% большинство и т. д. Так, требование максимальной полноты, т. е. требование, чтобы в ответе были все истинные альтернативы из области вопроса, передается в ответе предложением Все истинные альтернативы содержаться в выборе- ), а требование 5-процентной полноты — предложением 5 выборе содержится 5% истинных альтернатив . [c.58]


    Закон сохранения массы, закон сохранения и превращения энергии при химических реакциях рассмотрены на с. 55. В курсах неорганической и органической химии вы ознакомились также с различными типами химических реакций, Теперь обобщим этот учебный материал. [c.85]

    Гомоядерные двухатомные молекулы а- и п-связи. Попробуем теперь обобщить этот подход на более сложные объекты, начав с гомоядерных двухатомных молекул. Для удобства разобьем процедуру составления схемы молекулярных орбиталей на следующие пять этапов. [c.48]

    Мы можем теперь обобщить полученный результат, считая, что зависимость скорости химического взаимодействия от концентрации реагирующих веществ всегда будет выражаться одним и тем же законом, который мы выяснили на примере двух реакций скорость химической реакции, протекающей в однородной среде, пропорциональна произведению концентраций реагирующих веществ, возведенных в степени их стехиометрических коэффициентов. Это и есть формулировка основного закона химической кинетики. [c.109]

    Обобщенные координаты и равновесное состояние. Теперь обобщим биполярные координаты так, чтобы система отсчета была, применима к произвольным конфигурациям поля. Биполярная коор- [c.236]

    Мы можем теперь обобщить наш обзор процессов, происходящих на рецепторном уровне (см. табл. 11.2). В передаче информации из области сенсорного стимула в область импульсного разряда мы видели четыре стадии (преобразование, генерацию рецепторного потенциала, его электротоническое распространение, генерацию импульса). Мы видели также, как. рецептор определяет основные свойства сенсорного ответа. Таким образом, специфичность сосредоточена в молекулярных механизмах чувствительной мембраны. Кодирование интенсивности связано с преобразованием градуальных рецепторных, потенциалов в частотный импульсный код. Адаптация определяет профиль ответа в зависимости от временной размерности часто имеется тенденция повышения чувствительности к изменению стимула. Распределение всей популяции рецепторов определяет, как мы вскоре покажем, пространственную организацию поступающей информации. [c.275]

    Закон Дальтона (см. 2) устанавливает, что давление смеси (идеальных) газов составляет сумму парциальных давлений компонент смеси (парциальное давление компоненты — это давление, которое компонента оказала бы, если бы она одна занимала все пространство, занятое смесью). Этот закон указывает, что на каждую компоненту не воздействует присутствие других компонент и свойства компоненты в смеси не меняются. Теперь обобщим закон Дальтона, полагая, что для смеси идеальных газов энергия и энтропия также равны сумме энергий и энтропий (парциальных энергий и парциальных энтропий), которые каждая компонента имела бы, если бы она одна занимала весь объем, занятый смесью, при той же температуре, что и смесь. [c.111]


    Теперь обобщим наши результаты, учитывая условия, заданные для случая теплопроводности, и таким образом сформулируем интегральный принцип термодинамики. Величину всегда можно задать соотношением [c.219]

    Представляется очень странным, что в то время как нелинейные уравнения переноса типа (Г.4) можно вывести как из универсальной формы интегрального принципа (А.1), так и из парциальной формы (Б.2), в квазилинейном случае дело обстоит иначе. Другими словами, универсальная и парциальная формулировки интегрального принципа в квазилинейном случае не эквивалентны. Действительно, легко убедиться, что квазилинейные уравнения переноса (В.3) нельзя получить из парциальных форм (Б.2) и (Б. 5), т. е, они не представляют вариационного принципа в нелинейном случае. Именно поэтому ранее при рассмотрении теплопроводности в твердых телах мы предпочли формулировку интегрального принципа в универсальной форме [91]. Теперь, обобщая наши предыдущие результаты, докажем в общем виде дополнительную теорему, которая обеспечивает справедливость универсальной формы в квазилинейных случаях. Коротко теорему можно сформулировать следующим образом В случае квазилинейных конститутивных уравнений вариация суммы потенциалов рассеяния по параметрам Гг равна нулю. [c.289]

    В ГЛ. 3, НО уже теперь должно быть достаточно ясно, что на практике приходится иметь дело только с несколькими членами ряда, т. е. по существу с полиномами, а не с бесконечными рядами. Таким образом, при анализе экспериментальных данных необходимо соблюдать определенную осторожность. Например, соотношения (1.4), связывающие коэффициенты рядов разложения по плотности и по давлению, не могут быть строго обобщены на случай полиномов и справедливы только для бесконечных рядов. Экспериментаторам также хорошо известно, что ряд с заданным числом членов по плотности описывает экспериментальные данные лучше, чем ряд по давлению с таким же числом членов [30— 32]. Причину этого поведения можно установить из графиков зависимости pv—р и pv—р. На графике ри—р имеются области, где тангенс угла наклона касательной к изотермам очень велик (в частности, в критической точке наклон касательной бесконечен), однако наклон изотерм на графике pv—р более пологий. Обычно полиномы хуже описывают кривые с большим наклоном и не могут воспроизводить кривые с вертикальными касательными. Ряд по плотности имеет также некоторое преимущество перед рядом по давлению в том смысле, что каждый член первого ряда имеет простую теоретическую интерпретацию с точки зрения числа взаимодействующих молекул. Это обстоятельство было иллюстрировано в обзоре Роулинсона [32]. Тем не менее ряд по давлению широко используется из-за практического удобства уравнения, имеющего давление в качестве независимой переменной [30, 31]. [c.18]

    Решение. Этот пример в значительной степени уже решен по частям в ряде предыдущих примеров, посвященных диффузионным процессам. Обобщим теперь выполненные расчеты, дополнив их решением остальных вопросов. [c.342]

    Теперь ясно, что у/ состоит из атомных орбиталей только двух атомов, кислорода ( ) и водорода (.Уд), т.е. является двухцентровой, локализованной на связи О—Нд. Аналогично — двухцентровая молекулярная орбиталь,. локализованная на связи О— Н . Этот результат, полученный строгим путем унитарного преобразования, можно обобщать линейная комбинация двух независимых МО, многоцентровых, приводит к двум эквивалентным двухцентровым МО, причем общее распределение электронной плотности в молекуле (или функция Ф) остается неизменным. Поэтому можно сразу образовать из многоцентровых орбиталей /1 и 2 Две эквивалентные МО = VI + г и 2 = [c.194]

    Молекула хлора (С1з) в теории строения обозначалась так С1 — С1 теперь ее изображают Б виде С1 С1 В наружном слое атома галогена 7 электронов, следовательно, каждому атому недостает одного электрона обобщая свой один электрон с электроном партнера, они образуют общую пару. Так связываются однородные атомы, у которых в наружном слое 7 электронов (атомы галогенов). [c.107]

    В 1913 г. Н. С. Курнаков (1860—1941), обобщивший количественные методы химических исследований, развивавшиеся Ломоносовым, Лавуазье, Дальтоном, Менделеевым, Гиббсом, Вант-Гоффом, Розебомом, Ле Шателье и многими другими учеными, предложил называть метод исследования веществ по изменению любых поддающихся измерению свойств образованных ими равновесных химических систем физико-химическим анализом [121 ]. Теперь под физикохимическим анализом подразумевают область науки, изучающую зависимость между составом, состоянием и свойствами физикохимических систем. [c.126]

    Вы закончили изучение химии. Теперь предстоит повторить пройденный материал. При этом важно обратить внимание на фундаментальные основы, обобщить свои знания. [c.355]

    Обобщим теперь эти утверждения и определения [2]. Если к кристаллу приложено произвольное однородное напряжение то возникающая однородная деформация такова, что каждая ее компонента е, линейно связана со всеми компонентами напряжения. Так, например, [c.162]

    Весь фактический материал химии нельзя полностью обобщить единой теорией. Но в то же время химические теории теперь разработаны достаточно глубоко, и это в значительной мере облегчает изучение химии, позволяет студентам легче достигать цели при овладении знаниями о свойствах веществ и особенностях реакций между ними путем сопоставления эмпирического материала с теориями, например с теорией строения атома, изложенной в предшествующих главах, и периодическим законом, рассмотрение которого будет начато в следующем разделе. [c.99]


    Обобщим теперь приведенные выше сведения о свойствах простых анионов неметаллических элементов в нейтральных и кислых водных растворах с учетом положения этих элементов в периодической системе. На рис. 18.2 схематически изображены те области периодической таблицы, к которым относятся простые анионы каждого из трех указанных выше типов. [c.328]

    Мы уже исследовали одно важное свойство спектральной оценки, а именно ее смещение Другое важное свойство описывается ее дисперсией В разд. 63 4 было получено приближенное выражение для дисперсии в частном случае белого шума при использовании окна Бартлетта Теперь мы обобщим этот результат на случай произвольного процесса и произвольного окна Зная дисперсию, можно на любой частоте построить доверительный интервал для истинного спектра В этом разделе показано, что если две частоты отстоят друг от друга достаточно далеко, то ковариация оценок на этих частотах почти равна нулю Поэтому для таких частот доверительные интервалы можно строить независимо [c.299]

    Теперь решение задачи построения классификационной модели технологии и техники ГА воздействия очевидно необходимо обобщить сведения таблиц 5 и 6, что в итоге дает возможность перейти от конкретного технологического процесса через ГА-сайт к конструкции АГВ целевого технологического назначения через реализацию соответствующих характеристических параметров в практической конструкции. [c.34]

    Обобщим теперь закон (4.5) для трехмерного случая. Напряжение на площадке в жидкости зависит от ориентации этой площадки, т. е. от направления внешней нормали п (рис. 4.2). [c.48]

    Установив теорему экранировки, мы можем теперь вернуться к более глубокому обсуждению конформации выделенной цепи в расплаве. Представляет интерес несколько обобщить постановку задачи, приписав выделенной цепи степень полимеризации, отличную от степеней полимеризаций N всех остальных цепей. Это обобщение интересно потому, что мы уже имеем качественное представление о поведении системы в двух предельных случаях  [c.61]

    Теперь остается выяснить, почему на кривой 5 не было аналогичного излома. Эта кривая обобщает экспериментальные данные, [c.80]

    Теперь, на наш взгляд, полезно обобщить характеристики всех трех вторичных концентрационных переменных, обсуждавшихся выше. Такое обобщение, а также перечень экспериментальных данных, необходимых для применения этих функций, приведены в табл. 3.1. [c.53]

    Весь фактический материал химии нельзя полностью обобщить единой теорией. Но тем не менее химические теории теперь настолько разработаны, что значительно облегчают задачу изучения химии, позволяют проще усваивать знания о свойствах веществ и реакций между ними путем сопоставления эмпирического материала с теориями, такими, как периодический закон. [c.88]

    Возвратимся теперь к концентрационным изменениям, которые упоминались в разд. 3. Поток компонента I равен его скорости, умноженной на его концентрацию, и представляет собой число молей, проходящих за единицу времени через единичную площадь, ориентированную перпендикулярно к скорости. В разбавленных растворах соотношение (3-2) можно обобщить на случай потока ионного компонента следующим образом  [c.19]

    Индексом К здесь обозначена зависимость от первоначального детерминанта [в случае функций первого порядка этот индекс был нижним, как в формуле (72) теперь мы его пишем наверху]. Далее в уравнении (74) является непосредственным обобще- [c.119]

    Рассмотрим теперь, каким образом можно обобщить теорию, чтобы учесть взаимодействие частиц, образующих систему. Ограничимся случаем слабых взаимодействий, т. е. взаимодействий, вызывающих малые возмущения описанной выше ситуации свободно-молекулярного течения. В соответствии с этим полный гамильтониан имеет вид [c.74]

    Процесс образования понятий еще в большей степени, чем представлений, требует руководства со стороны учителя. Получив на основе химического эксперимента конкретный материал, учитель помогает учащимся обобщить его, систематизировать, выделить самое типичное, общее. При этом широко используются сравнения, противоречия между тем, что известно учащимся в быту, и что они наблюдают на опыте. Так, в начале изучения солей в седьмом классе ученик имеет о соли только частное представление, как о поваренной соли. И вдруг ему показывают большое количество различных солей. Как же это увязать с тем, что до сих пор ученик знал и что он видит теперь Оказывается, что бывает не только соль, которую он употребляет в пищу, но и множество других солей А чем же они отличаются друг от друга, в чем их сходство Если учитель будет просто показывать различные образцы солей, то все же из этих отдельных представлений не получится понятия о соли. Вот здесь на помощь и приходит химический эксперимент. Учитель показывает известный опыт взаимодействия натрия с соляной кислотой. При этом сравнивает состав кислоты и соли, находит общее и отличное. Демонстрирует опыт взаимодействия цинка с соляной кислотой, сравнивает с опытом взаимодействия натрия с соляной кислотой. И опять находит общее и отличное в составе соли и кислоты и затем приходит к понятию о соли. [c.9]

    Рассмотрим теперь, в какой мере полученные выше результаты можно обобщить на случай нескольких возмущающих уровней. Этот [c.545]

    Теперь нам следует обобщить полученный результат, перейдя от простой реакции [c.249]

    Теперь обобщим эту теорему на случай двумерной регрессии, т. е. разлагаем зависимую случайную величину z по сферическим функциям ( os 0) sin m(f, Р т ( os0) os пир, которые, очевидно, линейно независимы, причем [c.145]

    Теперь обобщим. — Товарищ Стоянов начал говорить медленно, чтобы ученики могли спокойно записать все. — В первом электронном слое имеется только два электрона, во втором — восемь, а в третьем больше всего — восемнадцать. Сколько могло бы их быть в четвертом слое Слушайте внимательно, чтобы уловить закономерность. [c.155]

    Ранее мы считали, что вся информация, вводимая в компьютер,— атомарная, так что мы могли иметь дело только с сетапами. В части I мы обобщили ситуацию, допуская в качестве входной информации более сложные, функционально составные формулы. Это обобщение требует обращения к эпистемическим состояниям. Теперь нам приходится признать, что практически важно давать иногда компьютеру информацию в виде правил, которые бы позволили ему менять собственное представление эпистемических состояний в нужных нам направлениях. Другими словами, желательно иметь возможность инструктировать компьютер, чтобы осуществлять некоторые шаги вывода, не являющиеся просто тавтологическими следствиями. Напри-.лер, вместо физической передачи компьютеру полного списка победителей и не-победителей Серий 1971 г., очевидно, проще сообщить компьютеру Пираты победили, и далее, если вы имеете победителя и команду, не совпадающую о победителем, то эта команда должна быть не-победителем (т. е. х)(у) у). При наличии необ- [c.253]

    Изменим теперь поперечные сечепия, включенные в р и у. что вызовет соответствующие изменения ъ д ш д. Допустимы также и другие изменения можно изменить, например, спектр деления введя добавочное количество деляш,ихся ядер. Но это несущественно, так как все выкладки, приводимые здесь, могут быть легко обобщены с учетом этого изменения. Может измениться граница при изменении температуры среды, если предположить, что она соответствует тепловой энергии. Однако, как это было предположено при определении, соответствует энергии, гораздо меньшей тепловой, так что практически в указанной области нет нейтронов, а влияние изменения температуры может быть учтено соответствующими изменениями р и у. При использовании уравнения (13.29) один из интегралов выпадает, и результат может быть записан в виде [c.571]

    Итак, мы определили в наиболее общем виде то, что мы измеряем. Теперь пужпо обобщить то, над чем проводится измерение. В результате получим определение вероятности, обобщающее как классическую, так и квантовую вероятность. [c.77]

    При первом рассмотрении теории Хюккеля было предположено, что все атомные орбитали одинаковы и имеют одну и ту же энергию (разд. 9.1). В этом случае в теории Хюккеля необходимо задать только два эмпирических параметра — кулонов-ский интеграл а и резонансный интеграл р. Модель Хюккеля оказалась чрезвычайно успешной в корреляции экспериментальных данных для альтернантных углеводородов, однако до сих пор были обсуждены только молекулы, состоящие из атомов углерода и водорода (атомы Н фактически игнорировались). Если теперь попытаться обобщить теорию Хюккеля на случай других атомов в тех же сопряженных системах, например для СбН5Ы=ЫСбН5 и СН2—СИ—СН 0, то понадобятся значения как кулоновских, так и обменных интегралов для этих атомов. Изменения в а и р обычно относят к значениям, соответствующим атомам и связям в бензоле, которые обозначим ас и рсс. Таким образом, для атома X имеем [c.208]

    Колли, один из пионеров биосинтетических исследований и синтезов природных соединений по биогенетическому образцу, писал в 1893 г.. .. попытка искусственно получить существующее в природе вещество и имитировать в лаборатории отдельные из множества процессов, беспрестанно происходящих вокруг нас в природе, была всегда одной из важнейших целей химика-органика . Тем не менее примерно 70 лет спустя Ван Тамелен был вынужден отметить практически полное отсутствие сходства между синтетическими процедурами, используемыми химиками-органиками при синтезе сложных природных молекул, и методами и путями, которые предположительно реализуются в природе при создании тех же соединений. Знаменитый теперь синтез тропинона, осуществленный Робинсоном, в противоположность очень длинному обычному синтезу этого же вещества, описанному Вильштеттером, явился первым примером, продемонстрировавшим внутреннее изящество синтети> ,еских методов, основанных на идеологии построения природных молекул в мягких условиях из компонентов, которые являются реальными или предполагаемыми аналогами соединений, реально используемых в природе. Богатые возможности, заложенные в этой идее, использовались пока лишь в незначительной степени и сравнительно скромные успехи, достигнутые в этом направлении, были обобщены Ван Тамеленом в 1961 г. [6]. Однако с 1950 г. была накоплена значительная информация о путях биосинтеза, что логично привело к возрастанию активности исследователей в этой области. Некоторые из последних примеров применения этих идей в планировании и осуществлении органических синтезов обсуждаются ниже. [c.17]

    Введем теперь новое сокращенное обозначение для интегрирования, называемое дираковским обозначением. Это обозначение первоначально было принято для векторной записи, но впоследствии было обобщено на интегралы. Обозначение [c.112]

    Гордон и Скэнтлебери [18] обобщили формализм теории ветвящихся процессов на случай циклообразования при /-функциональной поликонденсации. Для удобства расчета циклы в разветвленных агрегатах мысленно разрываются и молекулы представляются в виде деревьев. В отличие от случая, когда циклы отсутствуют, в молекулах теперь имеются функциональности трех видов непрореагировавшие, прореагировавшие с образованием межмолекулярных связей и свободные функциональности, возникшие вследствие мысленного разрыва циклов. При получении результатов используется предположение малости степени циклообразования. [c.56]

    Ценные сведения о структуре н о верхносхи металла и самого хемо-сорбированного слоя дает метод диф,ра1кции медленных элект.роиов (ДМЭ, см. гл. V, разд. V-бБ). Данные ДМЭ для ряда таких оистем обобщены в работе Соморджея [2а]. Например, атомы кислорода, хемосорбированного на -плоскостях никеля (110), образуют решетку или сетку типа (2X1), тогда как молекулы хемосорбированной на этих же плоскостях окиси углерода образуют решетку (1X1). Если хемосорбируется водород, дифрактограмма соответствует решетке (1X2). Правда, теперь это относится к поверхностным атомам никеля, поскольку вследствие низкой плотности электронов метод ДМЭ не детектирует ато мо в водорода. [c.507]

    Из этой книги читатель почерпнул сведения о новой отрасли науки — хроматографическом методе. Теперь уместно подытон ить и несколько обобщить изложенный материал. [c.94]

    Полученные выше формулы нетрудно обобщить таким образом, чтобы они включали также кеупругие столкновения. Как известно (см. 41), формально неупругие столкновения можно учесть введением вместо действительных фаз комплексных фаз Все вычисления вплоть до перехода к действительным сечениям а и а остаются без изменения. При определении а и а" теперь получаем [c.499]

    Мы можем обобщить рассмотрение в рамках теории МО, предположив, что атомы лигандов обладают и я-орбиталями. Такие я-орбитали могут перекрываться с dxy-, dy - и гж-орбиталями, как Это показано для гж-орбитали на рис. 23.10, Поэтому вместо только одного I2g-Ha6opa МО, которые являются чистыми -орбиталями, теперь появляются два набора. Положение этих наборов 2g-и -орбиталей на диаграмме энергетических уровней МО заметно меняется в зависимости от природы я-орбиталей лиганда. Наиболее важен достаточно общий случай, когда л -орбитали не заполнены и лежат выше по энергии, чем -орбитали металла. Такая ситуация возникает тогда, когда лигандами являются 1) фосфины, у которых вакантны Зс -орбитали атома фосфора 2) ионы N- и оксид углерода СО, где незаполненные л -орбитали — это разрыхляющие ря -орбитали. [c.424]


Смотреть страницы где упоминается термин Теперь обобщим: [c.189]    [c.215]    [c.237]    [c.150]    [c.227]   
Смотреть главы в:

У химии свои законы -> Теперь обобщим




ПОИСК







© 2025 chem21.info Реклама на сайте