Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая защита металлов

    Для защиты металлов от атмосферной коррозии широко применяют нанесение различных защитных неметаллических (смазки, лакокрасочные покрытия) и металлических (цинковых, никелевых, многослойных) покрытий или превращение поверхностного слоя металла в химическое соединение (окисел, фосфат), обладающее защитными свойствами. [c.383]


    В настоящее время хорошо разработаны и широко применяются различные способы защиты металлов от коррозии с учетом характера металла и условий его эксплуатации. Наиболее эффективны против коррозии почвенной, под действием агрессивных химических сред и морской воды электрохимические способы защиты (катодная и протекторная). В обоих способах защита от коррозии достигается тем, что защищаемая конструкция оказывается катодным участком электрохимической системы. [c.227]

    Электрохимические процессы имеют большое практическое значение. Электролиз используется в металлургии легких и цветных металлов, в химической промышленности, в технологии гальванотехники. Химические источники тока широко применяются в быту и промышленности. Электрохимические процессы лежат в основе многих современных методов научного исследования и анализа. Новая отрасль техники — хемотроника — занимается созданием электрохимических преобразователей информации. Одной из важнейших задач электрохимии является изучение коррозии и разработка эффективных методов защиты металлов. В неравновесных условиях в растворе электролита возникают явления переноса вещества. Основные виды переноса диффузия — перенос вещества, обусловленный неравенством значений химических потенциалов внутри системы или между системой и окружающей средой конвекция — перенос вещества под действием внешних механических сил миграция — перенос заряженных частиц в электрическом поле, обеспечивающий электрическую проводимость электролитов. [c.455]

    Какие химические способы защиты металлов от коррозии вам известны  [c.112]

    Борьба с коррозией (электрохимическим и химическим разрушением металлов и сплавов) — проблема особой важности. Важнейшими методами защиты от электрохимической и химической коррозии являются использование вместо корродирующих металлов нержавеющей стали, химически стойких (кислотоупорных) и жаропрочных сплавов, защита поверхности металла специальными покрытиями, а также электрохимические и другие методы. К электрохимическим методам защиты в средах, проводящих электрический ток, можно отнести катодную защиту и способ протекторов. При катодной защите предохраняемый от разрушения металл (конструкцию) присоединяют к отрицательному полюсу источника электрической энергии. При протекторном способе к защищаемому металлу (например, подводной металлической части морских судов) присоединяют в виде листа другой, более активный металл — протектор (цинк и некоторые сплавы), который и будет разрушаться. [c.161]


    Покрытия, применяемые для защиты металлов, подразделяются на металлические, неметаллические и образованные в результате химической или электрохимической обработки поверхности металла. [c.559]

    Технический аргон тщательно очищают от следов влаги и газов (N2, О2, Н2) в колонках с у-АЬОз, а затем над титановой губкой при 700—800° С.. Минеральная футеровка электролизеров не допустима и тепловая и химическая защита внутренних стенок электролизеров достигается образованием гарниссажа из застывшего электролита при охлаждении стенок ванны водой. Для поддержания электролита в расплавленном состоянии организуется внутренний обогрев переменным током. Все операции по установке и извлечению катодов, подаче электролита и многие другие проводятся в полной изоляции от внешней среды. Ванна заполнена аргоном и в случае выделения хлора, непрерывно промывается аргоном. Полученные осадки металлов очищаются от включения электролита либо отмывкой в растворах, либо отгонкой летучих солей и откачкой газов нагреванием в глубоком вакууме. [c.328]

    ХИМИЧЕСКАЯ ЗАЩИТА МЕТАЛЛОВ [c.84]

    Практическое применение находят и химические соединения марганца. Соли двухвалентного марганца используются для окрашивания тканей, при производстве керамических красок, а также для защиты металлов от коррозии. В сельском хозяйстве соли марганца служат в качестве микроудобрений. [c.532]

    Все способы борьбы с коррозией, т. е. предохранения аппаратуры от действия агрессивных сред, можно разделить на следующие группы 1) применение коррозионно-стойких металлов, 2) применение металлических защитных покрытий, 3) применение неметаллических материалов неорганического происхождения в качестве основных конструкционных материалов или для защиты металлических конструкций, 4) применение коррозионно-стойких неметаллических материалов органического происхождения в качестве основных конструкционных материалов или для защиты металлических конструкций, 5) химическая защита металлов созданием защитных пленок взаимодействием металла со средой (окисные и солевые пленки, гарниссажи) или применением ингибиторов, или же путем регулировки состава среды 6) электрохимическая защита с использованием анодного протектора или источника постоянного тока. [c.238]

    Учебное пособие для студентов металлургических вузов и факультетов. Может быть полезно инженерно-техническим работникам проектных организаций, исследовательских институтов, металлургических заводов, предприятий химической промышленности, занимающимся защитой металлов от коррозии. [c.2]

    Адсорбционная теория пассивности. Основной механизм защиты металлов, согласно адсорбционной теории пассивности, заключается в насыщении валентностей поверхностных атомов металла путем образования химических связей с адсорбирую- [c.63]

    Поверхность изделий и сооружений из металлов при соприкосновении с окружающей средой подвергается механическому и химическому воздействию. Разрушение металлов, вызываемое последним, называется коррозией. Потери металла от коррозии огромны. поэтому ее изучение и разработка методов защиты металлов имеют особенно важное значение. [c.8]

    Ежегодно издается 48 выпусков следующих серий Коррозия и защита металлов. Промышленный органический синтез. Процессы и аппараты химических производств. Силикатные материалы. Синтетические высокополимерные материалы. Химия и переработка нефти и газа. Химия и технология неорганических веществ. Цветная металлургия. Целлюлозно-бумажная промышленность. [c.130]

    Значительный вклад в развитие электрохимии внесли также русские ученые. В. В. Петров (1761—1834) изучал электропроводность растворов, химические действия электрического тока, электрические явления в газах и т. п. С помощью созданного им крупнейшего для того времени химического источника тока в 1802 г. он открыл электрическую дугу. Б. С. Якоби (1801—1874) в 1834 г. изобрел электродвигатель, работавший на токе от химического источника. В 1838 г. он предложил гальванопластический метод (см. разд. У.П). П. Н. Яблочков (1848—1914) изобрел электродуговую лампу (1875 г., свеча Яблочкова ), работал над созданием химических источников тока, выдвинул (1877 г.) идею создания топливного элемента (см. разд. А.12). Н. А. Изгарышев (1884—1956) развил теорию химического источника тока, работал над проблемой защиты металлов от коррозии, открыл явление пассивности металлов в неводных растворах электролитов, и по праву считается одним из основателей электрохимии неводных растворов. А. Н. Фрумкин (1895—1971) разрабатывал вопросы кинетики электрохимических процессов, развил теорию строения двойного электрического слоя. [c.233]


    В общетеоретическую часть включены вопросы строения вещества, энергетики и кинетики химических реакций, растворов, окислительно-восстановительных и электрохимических процессов, а также обзор свойств элементов и их соединений. Рассмотрено строение вещества на атомном, молекулярном и надмолекулярном уровне, а также строение кристаллов. Изложены общие закономерности протекания химических реакций, в том числе основы химической термодинамики и химической кинетики. Большое внимание уделено тепловым эффектам и направленности химических реакций, химическому, фазовому и адсорбционному равновесию. Изложены кинетика гомогенных и гетерогенных реакций, цепных и фотохимических реакций и основы катализа. Освещены дисперсные системы, коллоидные и истинные растворы, большое внимание уделено растворам электролитов. Рассмотрены термодинамика и кинетика окислительно-восстановительных и электрохимических процессов, коррозия и защита металлов. Выполнен обзор свойств химических элементов и их простых соединений, рассмотрены строение и свойства комплексных и органических соединений. [c.3]

    Работа 23. Коррозия и защита металлов Опыт 1. Химическая и электрохимическая коррозия [c.105]

    Обработкой металлической иоверхности химическим или электрохимическим путем можно получить защитные иленки, обладающие сравнительно высокой коррозионной стойкостью в атмосферных условиях, в воде и в некоторых других слабоагрес-сивиых средах. К числу таких покрытий относятся оксидирование, фосфатирование, анодирование, химическое никелирование и др. В химическом маш1гностроенин эти виды защиты металлов применяются очень редко, главным образом для защиты от атмосферной коррозии, повышения износостойкости деталей, улучшения внешиего вида и т. и. [c.328]

    Глава шестнадцатая КОРРОЗИЯ И ЗАЩИТА МЕТАЛЛОВ. ХИМИЧЕСКАЯ СТОЙКОСТЬ МАТЕРИАЛОВ [c.505]

    Современная техника использует огромные количества металлов и сплавов. Поэтому разработка способов защиты металлов от коррозии является важной народнохозяйственной проблемой. Особое значение имеет борьба с коррозией металлов в химическом аппаратостроении, судостроении, в нефтяной промышленности, в металлургии, в ракетной технике. [c.325]

    Изучая химическую стойкость окисных пленок по отношению к агрессивных растворам, Эванс обнаружил, что, вопреки существовавшему мнению, снятая с железа высокотемпературная окалина практически не растворяется даже в очень сильных кислотах. Очень медленно растворяются кислотой и прозрачные чешуйки пленок, снятые с железа, окислившегося при комнатной температуре. Следовательно, сплошная окисная пленка в принципе вполне может защитить металл не только от химического окисления, но и от электрохимического растворения на аноде. В то же время многие окислы металлов, особенно в тонких слоях, обладают достаточной элект-тронной проводимостью для того, чтобы на покрытой ими поверхности могли протекать любые анодные процессы, связанные с разрядом молекул или ионов, т. е. с передачей электронов от компонентов раствора к металлу. А это, как уже отмечалось, характерно для пассивных металлов, выполняющих роль нерастворимых анодов. [c.434]

    Важнейшей операцией в процессе подготовки к напылению является грунтовка металлической поверхности, т. е. нанесение тонкой пленки хроматов или фосфатов для увеличения адгезии ППУ к металлу и максимального снижения скорости коррозии под покрытием, если оно будет повреждено. Роль хроматов в данном случае сводится к следующему под их воздействием поверхность металла окисляется и покрывается тонкой непре-)ывной пленкой, обеспечивающей химическую защиту металла. Большая окислительная способность хроматов при этом полностью подавляет анодную реакцию и коррозия сводится к минимуму до тех пор, пока хроматы ионов присутствуют на поверхности поэтому хроматы вводят в грунтовку при нанесении их на стальные и алюминиевые поверхности. [c.132]

    Известно, что от К. м. безвозвратно теряется около 10% ежегодной доСычи металла, кроме дополнительных потерь, связанных с антикоррозионными мероприятиями и ликвидацией последствий от коррозии. По механизму коррозионного процесса различают К- м. химическую и электрохимическую. Под химической коррозией подразумевают взаимодействие металлов с жидкими или газообразными веществами на поверхности металла, не сопровождающееся возникновением электродных процессов на границе раздела фаз. Напрнмер, реакции нри высоких темперагурах с кислородом, галогенами, сероводородом, сернистым газом, диоксидом углерода или водяным паром. Под электрохимической коррозией подразумевают процессы взаимодействия металлов с электролитами в водных растворах или в расплавах. Для защиты от коррозии поверхность металла покрывают тонким слоем масляной краски, лаков, эмали, другого металла, используют ингибиторы коррозии, электрохимическую защиту металлов, вводят в сплавы новые элементы, сильно повышающие коррозионную устойчивость, такие как хром, марганец, кремний и др. [c.136]

    Химические процессы определяют сгорание и окисление нефтепродуктов, хемосорбцию ПАВ, химическую коррозию или химическую защиту металлов, химическое взаимодействие ПАВ в объеме нефтепродукта. Под химической коррозией металла понимают его взаимодействие с коррозионной средой, при котором окисление металла и восстановление окислительной компоненты коррозионной среды протекают в одном акте [41—44]. Под химическим коррозионным износом (химической коррозией) понимают непосредственное взаимодействие металла с компонентами топлив, масел, смазок, присадок, продуктами их окисления, деструкции, старения, продуктами сгорания топлив и масел, приводящее к разрушению металла (самопроизвольному или при механическом воздействии) без возникновения в нем электрического тока и сопровождающееся поглощением или выделением тепла. Для химических процессов характерен прямой контакт реагирующих частиц, в связи с чем путь электронов при осуществлении реакции невелик. Химический процесс зависит от энергии активации и характеризуется нена-правленностью (хаотичностью) электронных переходов. [c.14]

    С. А. Балезиным и др., выяснены многие важные стороны этого явления. Наряду с другими способами защиты металлов ингибиторы коррозии широко используются при химических методах очистки черных металлов от окалины и ржавчины при химической очистке паровых котлов от накипи. Так как замедлители коррозии уменьшают скорость растворения в кислоте самого металла, но не уменьшают скорости растворения ржавчины или накипи, то применение их в этих случаях сильно ослабляет коррозию. Действие ингибиторов коррозии в этих случаях объясняется тем, что они хорошо адсорбируются на поверхности самого металла, но не его солей или окислов. [c.461]

    Наибольший интерес в области защиты металлов от коррозии полимерами представляют пластические массы на основе фтороргаиических соединений. Такие пластмассы, как политетрафторэтилен (фторопласт-4) и политрифторхлорэтилен (фторопласт-3), а также ряд сополимеров на основе политетрафторэтилена с другими фторорганнческими полимерами (фтористым винилиденом, гексафторнолипропиленом и др.) обладают рядом столь ценных свойств (исключительно высокая химическая стойкость, высокая теплостойкость и др.), что это делает их непревзойденными материала.мн в антикоррозионной технике. [c.428]

    Приведены основные сведения по теории химической и электрохимичеокоЯ коррозии металлов. Дана краткая оценка коррозионной стойкости конструкционных материалов в различных условиях, рассмотрены принципы основных видов защиты металлов от коррозии, технология производства некоторых видов антикоррозионных работ и ремонта ос5ое дов0ния. [c.2]

    Поверхность изделий и сооружений из большинства металлов, приходя в соприкос1юаение с окружающей средой, подвергается механическому и химическому воздействию. Последнее вызывает разрушение — коррозию, что приводит к огромным потерям металлов. В настоящее время изучение коррозии и разработка методов защиты металлов от нее имеют особенно важное значение. [c.213]

    Облицовывая стальные поверхности толстыми листами из пластмасс или резины, можно в основном достичь защиты от кислот, щелочей и других агрессивных жидкостей и газов. Примерами таких материалов могут служить резина, неопрен, 1,1-полидихлорэтилен (саран). Для создания достаточно хорошего диффузионного барьера и защиты металла основы от длительного воздействия агрессивной среды толщина покрытия должна составлять 3 мм и более. Высокая стоимость таких покрытий обычно ограничивает их применение сильно агрессивными средами, характерными для химической промышленности. [c.259]

    Металлические изделия при хранении и эксплуатации под воздействием окружающей среды (кислорода, влаги, химически активных продуктов) подвергаются коррозии и разрушаются. Нефтяные масла без присадок не в состоянии обеспечить длительную и надежную защиту этих изделий от коррозии. Чтобы улучшить защиту металлов от коррозии, в масла втаадят маслорастворимые органические вещества, препятствующие коррозии металлов в условиях атмосферного воздействия (электрохимической коррозии),— ингибиторы коррозии и под действием продуктов, содержащихся в маслах (химической коррозии), — противокоррозионные присадки. Ввиду различных причин коррозионного разрушения металлов приходится использовать в маслах присадки разных состава и механизма действия. [c.305]

    В общем случае использование металла в качестве конструктивного материала в данной среде возможно только в том случае, если процесс окисления достаточно заторможен. Скорость окисления не связана непосредственно с величиной изменения изобарно-изотермического потенциала ДО, а зависит от кинетических факторов. Например, —ДО а1,о, > —Д0ре,о5, однако железо корродирует (ржавеет) в большей степени, чем алюминий, если не осуществить эффективную защиту его от коррозии. Таким образом, нет однозначной связи между химической активностью металлов по отношению к кислороду и их стойкостью к коррозии. [c.21]

    В учебнике изложены современные предстсвления о строении атомов и химической связи, химии твердого тела. Рассмотрены энер гетика и кинетика химических реакций, химия растворов, окислительно-восстановительные и электрохимические процессы, коррозия и защита металлов. Дается общая характеристика химических элементов и и.х соединений (простых, комплексных и органических). Освещается химия конструкционных, ядерных и электротехнических материалов, химия воды и топлива. [c.2]

    Борьба с коррозией является народнохозяйственной задачей, поэтому исследования теории коррозии и проведение мероприятий по защите металлов от разрушения имеют первостепенное значение. Защита металлов от коррозии производится путем нанесения металлических покрытий из более стойких в данной среде металлов, нанесения лаков, красок, пластмасс и т. д. Среди различных методов защиты все большее значение приобретает пассивирование металлов. Некоторые металлы (Ре, N1, Сг, А1, и др.) в определенных условиях (состава и концентрации среды, /°, р) переходят в состояние высокой химической устойчивости, тогда как в исходных условиях ведут себя, как химически неустойчивые. Так, если железо погрузить в раствор разбавленной НМОз, то наблюдается интенсивное растворение металла. Однако при достижении некоторого предельного значения концентрации кислоты растворение металла прекращается и наблюдается переход его в пассивное состояние. При этом потенциал железа становится более положительным. Железо после пребы- [c.270]

    Книга предназначена в качестве учебного пособия для студентов вузов, специализирующихся в области физической химии, электрохимии, физикохимических методов анализа, технологии электрохимических производств, электрометаллургии, коррозии и защиты металлов, химического сопротивления материалов, а также может быть полезна широкому кругу инженеров, аспирантов и научных равотников. [c.2]

    Для защиты металлов от коррозии применяют различные по-< крытия. Металлические изделия смазывают неокисляющимися маслами, покрывают лаками, красками, эмалями. Очень распространено нанесение тонкого слоя одного металла на другой. Для металлических покрытий используют металлы, которые могут образовывать на евоей поверхности защитные пленки. К таким металлам относятся хром, никель, цинк, кадмий, алюминий, олово. Неже применяют металлы, пассивные в химическом отношении — серебро, золото. [c.149]


Смотреть страницы где упоминается термин Химическая защита металлов: [c.63]    [c.486]    [c.298]    [c.243]    [c.25]    [c.17]    [c.170]    [c.410]    [c.224]   
Смотреть главы в:

Защита аппаратуры и оборудования нефтеперерабатывающих заводов от коррозии -> Химическая защита металлов




ПОИСК





Смотрите так же термины и статьи:

Защита химическая

Металлы химические



© 2025 chem21.info Реклама на сайте