Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесные или обратимые потенциалы металлов

    Для второго из выбранных объектов, т. е. для железа, стандартный электродный потенциал равен —0,44 В. Поэтому здесь, так же как и в случае цинка, следует считаться с реакцией выделения водорода, и, следовательно, условия стационарности будут заданы уравнением (24.2). Однако в отличие от цинка здесь совершенно иное соотношение токов обмена металла и водорода. Ток обмена железа имеет порядок 10 з А-см- , а для водорода на железном электроде в кислых растворах он достигает А-см 2. Можно ожидать поэтому, что стационарный потенциал железа в условиях кислотной коррозии должен заметно отличаться от его обратимого потенциала он будет смещен в сторону положительных значений, г. е. в направлении равновесного потенциала водородного электрода. Этот вывод согласуется с экспериментальными данными и находит дополнительное подтверждение в том, что железо ведет себя в некоторых интервалах pH подобно водородному электроду. Скорость коррозии железа также можно вычислить, если только известны его стационарный потенциал и перенапряжение водорода на нем. [c.493]


    Величина равновесного (обратимого) электродного потенциала зависит от рода металла, природы растворителя, температуры и активности металла в электролите. Она мо.- гт быть рассчитана для растворов любой активности по уравнению Нернста [c.45]

    Очевидно, левая часть этого уравнения выражает собой обратимый потенциал металла Мх в растворе с равновесным отношением концентраций, а правая часть — соответствующий потенциал металла Ма- Поэтому следует заключить, что, когда [c.343]

    Так как частные токи / а и /к одинаковы, то в условиях установившегося равновесия заряд металла по отношению к раствору, а следовательно, и потенциал электрода не являются функцией времени, а определяются лишь составом системы, ее температурой и давлением. Потенциал электрода е в этих условиях называется обратимым или равновесным электродным потенциалом. Величину равновесного электродного потенциала (в условной шкале) можно вычислить при помощи общих термодинамических уравнений, если известны электродная реакция, активности участвующих в ней веществ, а также температура и давление. [c.282]

    Установившийся при достижении равновесия обратимый (равновесный) потенциал металла Уме)об > являющийся разностью электрических потенциалов металла и раствора фр, может быть рассчитан по следующему уравнению  [c.153]

    Равновесный, т. е. установившийся при одинаковом переходе ионов из металла в раствор и обратно [формула (8.1)], обратимый потенциал металла по отношению к стандартному электроду подчиняется термодинамическим соотношениям. [c.231]

    Катализаторы гидрирования как обратимые водородные электроды, Применение электрохимических методов к исследованию катализаторов гидрирования в жидкой фазе позволило установить, что данные катализаторы, насыщенные водородом, ведут себя как обратимые водородные электроды. Водородный электрод — окислительно-восстановительный электрод, на котором устанавливается равновесие между электронами металла, ионами водорода в растворе и растворенным молекулярным водородом. Активность последнего фиксируется известным парциальным давлением водорода в газовой фазе. Термодинамически равновесный обратимый водородный потенциал на границе катализатор — раствор опреде-деляется суммарным процессом [c.185]

    С другой стороны, возможность установления обратимого водородного потенциала на данном металле можно использовать при подборе новых катализаторов гидрирования и дегидрирования как критерий пригодности их для данных процессов. Металлы или сплавы, не достигающие равновесного водородного потенциала, не [c.185]


    Если электродная реакция проходит в равновесных обратимых условиях (при токе, стремящемся к нулю), скачок. потенциала между электродом и электролитом называют равновесным потенциалом. Если к погруженному в раствор металлу приложить напряжение, на бесконечно малую величину превышающее равновесный потенциал, но обратного знака, процесс, определяющий равновесный потенциал, пойдет в обратную сторону. Если первоначально металл растворялся, то произойдет выделение его на электроде — электролиз. Однако продолжительный электролиз в таких условиях осуществить не удается, так как происходящее нарушение электронейтральности раствора (выведение положительно заряженных ионов) мгновенно создаст противо-э. д. с., процесс прекратится. Для осуществления продолжительного электролиза необходимо производить одновременную разрядку отрицательных ионов раствора на второ.м электроде (аноде) или восполнение убыли положительных ионов за счет растворения анода. Поскольку анод, погруженный в раствор (расплав), также обладает определенным потенциалом, то для осуществления электролиза в равновесных условиях необ-ходи.мо приложить внешнее напряжение, равное сумме равновесных потенциалов анода и катода плюс бесконечно малая величина. Сумма равновесных потенциалов анода и катода называется напряжением разложения. [c.258]

    Перенапряжение. В соответствии с положением термодинамики любой полуэлемент является необратимым, если через него протекает значительный ток. При таких условиях невозможно вычислить действительный потенциал полуэлемента, который всегда будет больше, чем соответствующий обратимый потенциал, вычисляемый по уравнению Нернста. Разность между равновесным и действительным потенциалами носит название перенапряжение. Перенапряжение можно определить как дополнительную силу, необходимую для ускорения реакции. Величина перенапряжения зависит от плотности тока, температуры и от участвующих в реакции веществ. Особый интерес представляет перенапряжение, необходимое для восстановления ионов Н+ (или воды) до газообразного водорода. При отсутствии перенапряжения этот процесс должен протекать щрц О в (при активности ионов водорода, равной единице НВЭ). В табл. 9.1 приведены величины перенапряжения водорода с разными катодами в одномолярном растворе серной кислоты. В некоторых случаях перенапряжение играет полезную роль. Например, катионы таких металлов, как железо и цинк, можно восстановить до свободных металлов с помощью ртутного катода, хотя их нормальные потенциалы более отрицательны, чем потенциал НВЭ. В этом случае высокое перенапряжение водорода на ртути не допускает его освобождения. Однако эти ионы не могут быть восстановлены из водного раствора на платиновом катоде, поскольку его потенциал ниже потенциала, требуемого для освобождения водорода. [c.143]

    Кроме понятия стандартного потенциала электрода, существуют понятия равновесного (обратимого), неравновесного (необратимого) потенциала металла, которые иллюстрируются на рис. 14. [c.33]

    Для многих систем металл/раствор равновесный электродный потенциал отрицательнее равновесного потенциала обратимого водородного электрода в том же растворе. Л жс если это ие [c.351]

    Следовательно, поведение корродирующего электрода отвечает поведению обратимого металлического электрода, а установившееся значение компромиссного потенциала близко к равновесному потенциалу соответствующего металлического электрода (рис. 98) и должно изменяться с концентрацией ионов металла в соответствии с формулой Нернста. Изменение pH раствора не влияет при этом заметно на величину стационарного потенциала. Таким образом, стационарный потенциал коррозии Ес приводится здесь к обратимому потенциалу металла мЕг, т. е. [c.520]

    В равновесных условиях общая величина электродного потенциала металла при постоянной концентрации ионов того же металла в растворе не зависит от строения двойного слоя Действительно, потенциал обратимого электрода определяется условиями равновесия и не зависит от того, каким путем это-равновесие достигается. [c.725]

    Для обратимых процессов металл ион металла равновесный потенциал близок к потенциалу полуволны полярографической волны и определяется уравнением [c.18]

    По мере перехода ионов в раствор растет отрицательный потенциал металла, обусловленный скачком потенциала на границе раздела фаз. Однако накопление ионов металла тормозит дальнейшее растворение. При каком-то определенном значении потенциала наступает подвижное равновесие в единицу времени из твердой фазы в жидкую переходит столько же зарядов, сколько из жидкой фазы в твердую (т. е. Ре Ре+2-пНгО). Одновременно устанавливается и баланс вещества. Это соответствует равновесному обратимому потенциалу,. который характеризует стремление к протеканию электродной реакции. Значение равновесного электродного потенциала связано со свободной энергией этого процесса и, следовательно, представляет собой термодинамическую величину. Ее рассчитывают по формуле Нернста [c.120]


    Вблизи равновесного потенциала стандартная свободная энергия активации реакции переноса некоторых простых катионов металла мало отличается от стандартной свободной энергии активации поверхностной диффузии. При достаточно отрицательных потенциалах стандартная свободная энергия активации увеличивается, в то время как для поверхностной диффузии эта величина остается неизменной. Отсюда более вероятно, что поверхностная диффузия остается стадией, определяющей скорость процесса при низких плотностях тока, тогда как стадия переноса заряда будет определять скорость при большей катодной поляризации (см. также раздел IV). Это было подтверждено экспериментально Мелом и Бокрисом [15]. Таким образом, исследование кинетики осаждения вблизи обратимого потенциала (в условиях, когда применение методов переменного тока для исследования границы фаз [16] обычно очень ограничено) дает небольшую информацию относительно стадии, определяющей скорость осаждения металла нри более отрицательных потенциалах. [c.267]

    Так как частные токи /л и /к одинаковы, то в условиях установившегося равновесия заряд металл.з по отношению к раствору, а следовательно, и потенциал электрода ие являются функцией времени они определяются лишь составом системы, ее температурой и давлением. Потенциал электрода в этих условиях называется обратимым или равновесным электродным потенциалом. Величину равновесного электродного потенциала (в условной шкале) можно вычислить при помощи общих термодинамических уравнений, если только известны электродная реакция, активности участвуюш,их в ней веществ, температура и давление. Э.д.с. равновесной электрохимической системы определяется при этом изме-иенпем термодинамического потенциала протекающей в ней реакции. [c.277]

    В результате реакции комплексообразования определенная доля ионов М"+ (тем большая, чем ниже константа нестойкости) будет присутствовать в растворе в виде сложных ионов МА - и, следовательно, концентрация свободных ионов металла должна уменьшиться. Это уменьшение и, соответственно, сдвиг обратимого потенциала электрода в этрицательную сторону будут тем значительнее, чем меньше констан-га нестойкости и чем выше концентрация добавки. Подбирая соответствующие комнлексообразо-ватели и их концентрации, можно изменить равновесные потенциалы присутствующих в растворе ионов различных металлов таким образом, чтобы обеспечить или их совместное осаждение в виде сплава, или наиболее полное разделение. [c.463]

    Величина равновесного (обратимого) электродного потенциала вависит от рода металла, природы растворителя, температуры и активности ионов металла в электролите. [c.30]

    Автор работы [75], наоборот, совсем не учитывает кристаллизационного перенапряжения при оценке электродного потенциала деформированного медного электрода в водном растворе Си504. При этом он утверждает, что деформированный металл (медь), погруженный в раствор собственных ионов, никогда не принимает обратимого потенциала. Предполагается, что в прямой анодной полуреакции растворения участвует деформированный металл, а в сопряженной обратной катодной полуреакции осаждения — равновесный электровосстановленный (т. е. не-деформированный). В результате между ними устанавливается не обратимый, а смешанный потенциал, хотя баланс массопере-носа сохраняется. Такое предположение находится в прямом противоречии с известными экспериментальными данными о катодном выделении меди на поверхности медных усов [76], свидетельствующими о большом кристаллизационном перенапряжении (до ста милливольт). При этом анодное растворение кристаллов меди происходило в определенных слабых местах, на которых затем обратно осаждался металл при последующем включении катодной поляризации, тогда как на остальной поверхности выделения металла не происходило. Возвращение ад-атома в кри- [c.89]

    В работе [83], наоборот, совсем не учитывается кристаллизационное перенапряжение при оценке электродного потенциала деформированного медного электрода в водном растворе Си304. При этом утверждается, что деформированный металл (медь), погруженный в раствор собственных ионов, никогда не принимает обратимого потенциала. Предполагается, что в прямой анодной полуреакции растворения участвует деформированный металл, а в сопряженной обратной катодной полуреакции осаждения — равновесный электровосстановленный (т. е. недеформированный металл). В результате между ними устанавливается не обратимый, а смешанный потенциал, хотя баланс массопереноса сохраняется. Такое предположение находится в прямом противоречии с известными экспериментальными данными о катодном выделении меди на поверхности медных усов [84], свидетельствующими о большом кристаллизационном перенапряжении (до 100 мВ). При этом анодное растворение кристаллов меди происходило в определенных слабых местах, на которых затем обратно осаждался металл при последующем включении катодной поляризации, тогда как на остальной поверхности выделения металла не происходило. Возвращение ад-атома в кристаллическую решетку при катодном процессе, связанное с преодолением кристаллизационного перенапряжения, переводит атом в первоначальное состояние напряженного металла, и элементарный акт растворения — восстановления является обратным при соответствующем равновесном потенциале. [c.92]

    Если в растворе. присутствуют только ионы В+ или смесь А+ и В+ в соизмеримых количествах, то равновесная концентрация А+ должна тать на 17 порядков выше, что практически неосуществимо. Обратимый потенциал Еу, в строгом смысле слова, здесь не будет являться экспериментально наблюдаемой величиной, и при попытке - его реализации ионы-окислители R+ приведут к вытеснению металла А из сплава. В такой электрохимической системе должна была бы необратимо протекать пара реакции (4.18) и (1.19) до полного потребления ионов Bt или полного СР электроотрицательного компонента. Это явление нетрудно реализовать на практике, если в качестве реагента приме- [c.23]

    Эго — Простое представление о катодной защите, но на практике она сложнее. Как и при всяких поляризационных экспериментах, следует учитывать фактор времени. Предположим, что металл Ме с валентностью г катодно защищен в среде, которая не содержит ионов Ме . Если эффективный потенциал металла снизить до обратимого потенциала анодной реакции Ме Ме + г электронов (точка Ег на фиг. 65), то в равновесных условиях (определенных в разд. 2.2) мегалл удет находиться в контакте со средой, уже содержащей ионы Ме с активностью, равной единице. Так как объем среды не содержит ионов Me то возникает градиент концентрации и ионы Ме начинают диффундировать от гюверхности металла. Для поддержания соответствующей концентрации ионов Ме вблизи поверхности металла последний должен растворяться. При потенциостатических условиях защитная плотность тока возрастает. При гальваностатических условиях, чаще осуществляемых на практике, увеличивается скорость коррозии. Скорость коррозии удет зависеть от факторов окружающей среды, опрёделяющих [c.129]

    При достиженли равновесия (равенство скоростей анодного и катодного процессов) устанавливается постоянное значение потенциала металла. Потенциалы металлов, находящихся в равновесии с собственными ионами в растворе, называются обратимыми или равновесными и подчиняются уравнению Нернста  [c.51]

    Общая характеристика газовых электродов. Любой газовый электрод представляет собой полуэлемент, состоящий из металлического проводника, контактирующего одновременно с соответствующим газом и с раствором, содержащим ионы этого газа. Конструирование газового электрода и измерение потенциала системы газ — раствор ионов газа невозможно без участия металлического проводника, так же как любой электрод немыслим без проводника с электронной проводимостью. Кроме того, металл в газовых электродах не только создает электронно-проводящий электрический контакт между газом и раствором его ионов, но и ускоряет медленно устаяавливающееея электродное равновесие, т. служит катализатором электродной реакции. Следовательно, в газовых электродах можно использовать не любые металлы, а лишь те, которые обладают высокой каталитической активностью по отношению к реакции газ —ионы газа в растворе. Далее, потенциал металла в газовом электроде не должен зависеть от активности других ионов, присутствующих в растворе, в частности, от активности собственных металлических ионов. Являясь катализатором реакции между газом и его ионами в растворе, металл газового электрода в то же время должен быть инертным по отношению к другим возможным реакциям. Наконец, металл в газовом электроде должен обеспечивать создание по возможности большей поверхности раздела, на которой могла бы протекать обратимая реакция перехода газа в ионное состояние. Всем этим требованиям лучше всего удовлетворяет платина, которая чаще всего и используется при конструировании газовых электродов. Для создания развитой поверхности платину покрывают электролитически платиновой чернью, получая так называемую платинированную платину Pt, Pt. Газовые электроды очень чувствительны к изменению состояния поверхности платины, в частности, к отравлению ее каталитическими ядами. Получение воспроизводимых значений потенциала, отвечающих истинно равновесным условиям функционирования газовых электродов, связано поэтому с необходимостью соблюдения различных, не всегда легко осуществимых мер предосторожности. [c.155]


Смотреть страницы где упоминается термин Равновесные или обратимые потенциалы металлов: [c.32]    [c.46]    [c.33]    [c.23]    [c.23]    [c.661]    [c.23]    [c.42]    [c.314]    [c.80]    [c.130]    [c.9]    [c.425]    [c.425]    [c.467]    [c.492]    [c.524]    [c.8]    [c.8]   
Смотреть главы в:

Теория коррозии металлов Часть 1 -> Равновесные или обратимые потенциалы металлов




ПОИСК





Смотрите так же термины и статьи:

Потенциал равновесный

Потенциалы металлов



© 2025 chem21.info Реклама на сайте