Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория полимерных растворов Флори-Хаггинса

    В настоящее время существует несколько теорий, позволяющих количественно оценивать растворяющую способность растворителей по отношению к тем или иным полимерам. Сам факт существования нескольких теорий свидетельствует о том, что все они не лишены недостатков и имеют ряд ограничений. В последние годы на практике чаще всего используются две основные теории полимерных растворов Гильдебранда — Скетчарда (в лакокрасочной технологии в виде концепции трехмерного параметра растворимости) и Флори — Хаггинса. Теория Флори — Хаггинса применяется в основном прн исследовании полимерных систем для Оценки термодинамического сродства полимера и растворителя с помощью константы Флори — Хаггинса которую определяют экспериментально для каждой пары растворитель —полимер. [c.7]


    Существует вполне определенная связь между взаимодействием полимера и растворителя, характеризуемым в теории растворов Флори-Хаггинса параметром взаимодействия х, и размерами цепи. В основе такой связи лежит представление об осмотическом действии растворителя на полимерную молекулу, находящуюся в растворе в форме статистически свернутого клубка [103]. В результате осмотического действия растворителя клубок набухает, раздувается и молекула переходит в состояние с менее вероятной конформацией, которая определяется равновесием между осмотическими силами, стремящимися растянуть молекулу, и эластическими силами, препятствующими такому растяжению. Известно, что осмотическое давление растворов полимеров выражается уравнением  [c.37]

    ТЕОРИЯ ПОЛИМЕРНЫХ РАСТВОРОВ ФЛОРИ-ХАГГИНСА [c.272]

    Из других моментов, находящихся в противоречии с теорией Флори— Хаггинса, следует отметить отрицательные энтропии и теплоты смешения, наблюдаемые при растворении или разбавлении полимера в растворителях существенно иной полярности фазовое расслоение (термодинамическая неустойчивость) систем полимер— растворитель не только при низких, но и при высоких температурах (появление так называемой нижней критической температуры смешения). Предложенная Буевичем [24] модель построения теории полимерных растворов позволяет объяснить перечисленные недостатки теории Флори — Хаггинса, но поскольку общей теории растворов не существует, следует пользоваться приближенными методами, а концепция Флори — Хаггинса является достаточно полезной при оценке совместимости пластификаторов с полимерами, [c.140]

    Следует отметить, что хотя экспериментальные данные и показали уменьшение долговечности полимера с увеличением параметра В, все же сочли возможным предположить обратное действие разности параметров растворимости. При этом исходили из общих положений теорий регулярных растворов Гильдебранда и полимерных растворов Флори—Хаггинса, согласно которым уменьшение, в определенных пределах, абсолютной величины В соответствует увеличению склонности компонентов к взаимному растворению. [c.142]

    В те же годы Штаудингером было доказано, что высокомолекулярные соединения являются продуктами полимеризации и поликоиденсации мономеров с образованием ковалентных связен. Он ввел понятия степени полимеризации и статистической молекулярной массы. Одновременно разными исследователями было установлено, что сольватация макромолекул почти ие отличается от сольватации молекул мономеров. Оказалось, что особенности в поведении полимеров связаны не только с большим размером молекул, но и с гибкостью полимерных цепей, вследствие чего макромолекулы способны принимать большое число конформаций. Учет этих конформаций лежит в основе созданной Марком и Куном (1928 г.) кинетической теории изолированной макромолекулы и разработанной Хаггинсом и Флори статистической термодинамики растворов полимеров. Было доказано, что лиофильность молекулярных коллоидов (растворов полимеров) объясняется не столько взаимодействием с растворителем, сколько энтропийной составляющей, обусловленной многочисленными конформациями макромолекулы, свернутой в клубок. [c.357]


    Параметр взаимодействия / Согласно теории Флори — Хаггинса свободная энергия смешения полимерного раствора описывается уравнением  [c.139]

    Таким образом, надмолекулярная упаковка полимерных сеток определяет гетерогенность сетчатых иолиэлектролитов, полученных в результате осадительной сополимеризации (рис. 2.2). В гетеросетчатых сорбентах большая величина поверхности раздела и суммарного объема нор обеспечивается за счет организации элементов структуры на трех надмолекулярных уровнях строения сетки домены, микроглобулы, агрегаты микроглобул. Механизм формирования структуры сополимера в присутствии растворителей объясняется Душеком на основе классической теории растворов Флори—Хаггинса [128, 129]. В соответствии с предложенной Душеком термодинамической моделью [130], главными факторами, влияющими на разделение фаз в ходе гетерофазной сополимеризации, являются степень сшивки трехмерного сополимера, концентрация растворителя и энергия взаимодействия в системе, т. е. константа Хаггинса у пары полимер—растворитель. Теория Душека дает возможность определить критическую степень полимеризации, при которой происходит фазовое разделение, и описать равновесие между фазами. Сложность изучения закономерностей сополимеризации в присутствии растворителей заключается в том, что сам мономер действует как разбавитель, причем концентрация мономера н полимера и степень сшивки являются функциями степени полимеризации. [c.38]

    При очень низких поверхностных давлениях в белковой пленке вполне могут существовать развернутые молекулы, и Зингер [171] считает, что в таких условиях применима теория Флори — Хаггинса для полимерных растворов. В этой теории молекула полимера рассматривается как цепь из п звеньев (аминокислотных остатков в случае белков), каждое из которых обладает определенной гибкостью, характеризуемой числом 2. Для жесткой цепи 2 равно 2, а для гибкой цепи оно может достигать 4. При плотной упаковке один сегмент цепи занимает площадь Ь, средняя площадь пленки, приходящаяся а сегмент, равна о. Длинная гибкая цель, предоставленная самой себе, не является ни полностью развернутой, ни полностью свернутой. Она находится в некотором промежуточном состоянии, скорее всего почти развернутом. При сжатии цепь становится более компактной при этом конфигурационная энтропия уменьшается. Таким образом, как л, так и 2 должны зависеть от давления. [c.139]

    В плане теоретическом следует иметь в виду, что сомнительна справедливость применения объемных свойств полимера как такового (свободная энергия разбавления, растворимость, межфазное натяжение), к ансамблю нескольких молекул и, кроме того, существует значительная неопределенность в значении предэкспо-ненциального множителя в уравнении скорости. В то же время, теория растворов полимеров Флори—Хаггинса, использованная в качестве основы при оценках параметров, является, как общепризнанно, очень приближенной. При рассмотрении зародышеобразования сложность полидисперсных полимерных систем в значительной степени во внимание не принималась. Существенные упрощения использовались и при рассмотрении захвата олигомеров. Тем не менее, основные положения теории представляются удовлетворительными и могут также найти приложение к гетерогенной полимеризации в массе и к некоторым типам эмульсионной полимеризации. [c.197]

    Применение обращенной газовой хроматографии [245] основано на оценке характеристик удерживания летучих растворителей неподвижной полимерной фазой. Согласно теории Флори— Хаггинса для тройных растворов полимер—полимер—растворитель, модифицированной Скоттом [548], в случае бесконечного разбавления сорбата, Фх->-0 (случай обращенной газовой хроматографии) выражение для его химического потенциала в смеси имеет вид [c.276]

    Сказанное в полной мере относится и к теории Флори и Хаггинса. В 1942 г. Флори и Хаггинс независимо друг от друга объяснили необычное значение энтропии растворов полимеров с позиций статистической механики. Эти знаменитые работы, послужившие толчком для развития исследований термодинамических свойств полимерных растворов, составляют фундамент современных теорий растворов. Аномальные значения энтропии растворов в теории Флори — Хаггинса объясняются общим для всех полимеров свойством проявлять собственную гибкость, т. е. способностью полимерных цепочек достаточно большой длины легко приобретать множество различных конформаций. Теория была развита на основании чисто абстрактных общих представлений, однако она содержит так называемый параметр взаимодействия Флори — Хаггинса, учитывающий влияние межмолекулярных сил и, таким образом, отражающий индивидуальность и химическую природу макромолекул. [c.152]


    Теоретич. основы Ф. заложены в статистической термодинамической теории р-ров полимеров Флори — Хаггинса (см. Растворы). Большинство методов Ф. основано на зависимости растворимости полимерных фракций от размера, состава (для сополимера) или др. свойств макромолекул. Если в р-ре полимера качество растворителя будет постепенно ухудшаться (о хороших , идеальных и плохих растворителях см. Растворы), напр, в результате понижения темп-ры или добавления осадителя, то после достижения т. наз. критической точки начнется разделение р-ра на две фазы — разбавленную (фаза I) и концентрированную (фаза II, т. наз. гель). Равновесие между фазами устанавливается в течение определенного времени (иногда довольно длительного). При осуществлении большинства методов Ф. достижение равновесных условий сопряжено с известными трудностями, не всегда преодолимыми. [c.388]

    Следует отметить, что теория Флори — Хаггинса представляет собой только первое приближение в рещении задачи о термодинамике раствора полимера, не учитывающее ряд факторов [13, с. 27 14]. В частности, необходимо учитывать ограниченную гибкость цепи, зависящую от природы полимера, возникновение некоторого упорядочения в растворе в результате взаимодействия полимерных звеньев с молекулами растворителя и т. д. Учет ограниченной [c.21]

    Количественная теория этого явления была сформулирована Флори [76] и Хаггинсом [77—79 [, которые рассчитали число различных способов, которыми молекул растворителя, имеющих молярный объем и 2 полимерных цепей с молярным объемом Уз могут быть размещены в решетке таким образом, чтобы каждая ее ячейка была занята либо молекулой растворителя, либо одним из У2/У1 сегментов полимерной цепи. В основу этого расчета положено предположение о том, что нри размещении данного сегмента цепи в решетке, в которой уже имеются ранее разместившиеся там цени, вероятность заполнения ячейки решетки приближенно будет выражаться общей долей занятых ячеек. Это приближение совершенно несостоятельно для сильно разбавленных растворов, в которых молекулярные клубки, представляющие высокие локальные концентрации сегментов цепей, разделены чистым растворителем. Однако предположение теории Флори — Хаггинса вполне приемлемо в диапазоне концентраций, в котором цепи взаимно проникают друг в друга таким образом, что на молекулярном уровне плотность сегментов остается постоянной. Именно для этого диапазона теория оказалась наиболее успешной. На рис. 12 схематически изображено последовательное размещение в решетке из 49 ячеек четырех цепей, в каждой из которых содержится по семь сегментов. Очевидно, что для первой цепи может быть доступно большое число способов размещения, однако выбор любого из них налагает ограничения на вторую цепь, причем этот эффект становится все более ярко выраженным для каждой последующей цепи. (Фактически же пятая цепь не может быть размещена в решетке без перераспределения четырех предыдущих цепей.) [c.56]

    Теории Флори и Хаггинса недостаточно точно описывают и область разбавленных растворов полимеров. Это связано с одним из ее постулатов о постоянстве концентрации сегментов в объеме набухшего макромолекулярного клубка. В действительности среднее расстояние между центрами полимерных клубков намного больше среднеквадратичного радиуса инерции. [c.358]

    Такой переход предсказывается широко известной теорией стеклования Гиббса и Ди Марцио [116], которую обычно называют термодинамической, хотя она является статистической, а по физике, заложенной в ней, термокинетической. Эта теория основывается на решеточной модели растворов полимеров Флори — Хаггинса [40, 63], но если в последней узлы решетки, не занятые звеньями полимера, считались занятыми молекулами растворителя, то Гиббс и Ди Марцию считали их пустыми, а долю таких узлов приняли равной доле свободного объема полимера. Гибкость полимерной цепи задавалась разностью энергий шага вперед (аналог траяс-изомера) и в сторону (аналог гош-изомера) на трехмерной решетке. [c.186]

    Уравнение Флори—Хаггинса содержит только один настраиваемый параметр бинарного взаимодействия. Для простых неполярных систем одного параметра часто бывает достаточно, однако для сложных систем гораздо лучшее описание достигается за счет эмпирического дополнения к теории Флори—Хаггинса, предусматривающего использование по крайней мере двух настраиваемых параметров, что продемонстрировано в работах Мэрона и Накайимы [52], а также Хила и Праусница [38]. Последние обобщили уравнение Вильсона. Для полимерных растворов применимо также и уравнение ЮНИКВАК с двумя настраиваемыми параметрами [3]. [c.339]

    Теория Флори и Хаггинса базируется на решеточной модели, которая игнорирует различия в свободных объемах. Вообще, полимерные молекулы в чистом состоянии пакуются более плотно, чем молекулы нормальных жидкостей. Поэтому, когда молекулы полимера смешиваются с молекулами нормального размера, полимерные молекулы получают возможность осуществлять. вращательные и колебательные движения. В то же самое время меньшие по размеру молекулы растворителя частично, теряют такую возможность. Для учета этих эффектов Флори [27] и Паттерсоном, которые основывались на идеях, выдвинутых При-гожиным [72], разработана теория уравнения состояния полимерных растворов. Новая.теория более сложна, однако, в отличие от прежней, она может, хотя и не очень точно, описывать некоторые формы фазового равновесия компонентов, наблюдаемые в полимерных растворах. В частности, она способна объяснить то, что некоторые системы йолимер—растворитель могут проявлять нижние критические температуры, точно также как и верхние критические температуры (см, рис. 8.17). Инженерные приложения новой теории развивались только в последнее время. Исходные положения их даны Боннером [12], Бонди [10], а также Тапавища и Праусницем [85]. Приложение ее к фазовому равновесию в системе полиэтилен—этилен при высоких давлениях рассматривалось Боннером и др. [12], [c.339]

    Равновесному набуханию полимерной цепи в растворе соответствует такая величина среднеквадратичного расстояния между концами цепи (й ) , при которой сила осмотического набухания целиком уравновешивается силой сокращения упругой цепи. Принимая в качестве модели макромолекулы в растворе совокупность сегментов, распределенных в моляр-ном объеме согласно гауссовой функции распределения, и определяя свободную энергию смешения АОсм. по решетчатой теории Флори — Хаггинса, получим [1]  [c.97]

    При описании механизма адсорбции необходимо принимать во внимание природу растворителя, в котором растворен полимер. Все существующие ныне теории адсорбции полимеров из разбавленных растворов включают параметр термодинамического взаимодействия полимера и растворителя Xi2 теории Флори - Хаггинса. Конформации молекул на границе раздела определяются собственной гибкостью полимерной цепи, термодинамическим качеством растворителя, характеризуемым параметром X12 и параметром взаимодействия полимер-поверхность, введенным в теории Силберберга [28, 29] на основе модели квазикристаллической решетки адсорбционного слоя, которая обычно используется для описания свойств растворов полимеров. Этот параметр определяется по соотношению [c.22]

    В частности, как уже было указано выше, вне пределов весьма разбавленного раствора основной параметр % нельзя считать не зависящим от концентрации раствора, как это принято в теории. С другой стороны, еще в 1954 г. Томпа [674] указал, что одной из причин расхождения, в ряде случаев, теории Флори — Хаггинса с экспериментом может быть игнорирование ею эффекта ориентации в системах, содержащих полярные молекулы (сегменты). Между тем, с ориентацией связана добавочная энтропия. Позднее эффект ориентации в полимерных растворах учел Ямакава [675], положивший [c.317]

    Сложность теплового движения полимерных молекул затрудняет описание стерических эффектов, поэтому целесообразно рассмотреть альтернативный путь, предложенный Фишером. В его основе лежит теория растворов полимеров Флори и Хаггинса. Важнейшим понятием этой теории является параметр взаимодействия полимера с растворителем % гАЦи / КТ, где 2 — координационное число молекул растворителя вокруг звена полимерной молекулы в растворе, АПи = - [c.623]


Смотреть страницы где упоминается термин Теория полимерных растворов Флори-Хаггинса: [c.388]    [c.99]    [c.171]    [c.73]    [c.23]   
Смотреть главы в:

Полимеры -> Теория полимерных растворов Флори-Хаггинса




ПОИСК





Смотрите так же термины и статьи:

Растворов теория растворов

Растворы теория

Флори

Хаггинса



© 2025 chem21.info Реклама на сайте