Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность и мембраны клеток

    С другой, наружной, стороны не вся поверхность мембраны клетки должна быть гидрофобной — в противном случае произошло бы слипание клеток и стало бы невозможным необходимое для жизнедеятельности взаимодействие со средой. Следовательно, поверхностная мембрана должна обладать сложной структурой — ее обращенная внутрь сторона должна содержать химические группы, специфически соединяющиеся с внутренним каркасом, с внутриклеточными белками, а ее наружная сторона не должна быть однородно гидрофобной. Каркас, на который натягивается, к которому прикрепляется поверхностная мембрана, необходим, как мне кажется, и для того, чтобы эта мембрана не отделялась от клетки. В самом деле, детергентный слой вполне может образовать автономную структуру, и не обволакивающую клетку. Поэтому нужно, чтобы взаимодействие мембранных детергентов с каркасом было бы более сильным и специфичным, чем взаимодействие одной молекулы детергента с другой. Ясно, что такое обволакивание мембраной внутриклеточного содержимого нельзя обеспечить лишь за счет неспецифических электростатических или гидрофобных взаимодействий. [c.90]


    Перемещение молекул по поверхности мембраны клетки за время t определено экспериментально методом флюоресцентных меток - флюоресцирующих молекулярных групп. Флюоресцентные метки делают флюоресцирующими молекулы, движение которых по поверхности клетки можно изучать, например, исследуя под микроскопом скорость расплывания по поверхности клетки флюоресцирующего пятна, созданного такими молекулами. Остроумный прием, используемый с целью определения скорости перемещения флюоресцирующих [c.21]

    Строение клеточной мембраны показано на рис. 45. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны адсорбирован первичный слой 3 белковых молекул, взаимодействие которых друг с другом придает мембране механическую устойчивость и прочность. Мембраны пронизаны особыми липопротеиновыми (комплекс липидов и белков) каналами 4, при помощи которых, по-видимому, осуществляется селективный ионный транспорт. Раствор внутри клетки содержит относительно большие концентрации ионов К+ и низкие концент- [c.138]

    Кроме того, молекулы белков соединены с мембраной по-разному. По-видимому, некоторые молекулы белков вытянуты от одной поверхности мембраны до другой и могут обеспечивать перенос молекул и ионов из внешней среды внутрь клетки или в обратном направлении (рис. 15.28). [c.467]

    Чем определяется важная роль мембран в клетках Прежде всего мембраны окружают клетки и ограничивают их размеры. При этом они являются естественными агрегатами амфипатических молекул, т. е. молекул, один из концов которых является гидрофобным, а другой — гидрофильным. Способ упаковки таких молекул в бислое обеспечивает создание упорядоченного пограничного слоя между двумя жидкими фазами. Кроме того, мембраны представляют собой естественное местообитание для значительного числа относительно неполярных соединений, образующихся в процессе метаболизма. В мембраны включены многие белки, поверхности которых обладают гидрофобными свойствами. У некоторых белков, например у цитохрома bs (гл. 10, разд. Б. 5), имеются специальные гидрофобные участки, при помощи которых белки прикрепляются к поверхности мембраны. Благодаря полужидкому состоянию внутренней части мембраны в бислой могут входить и из него могут выходить белки и низкомолекулярные комлоненты в ответ на метаболические процессы, протекающие в близлежащих участках цитоплазмы. [c.355]


    Если на каком-нибудь участке мембраны проницаемость для ионов натрия увеличивается, то эти ионы устремляются внутрь клетки, нейтрализуя ее отрицательный заряд. Клеточная мембрана при этом деполяризуется. При деполяризации по поверхности мембраны распространяется затухающий электрический сигнал, аналогично тому как это имеет место при прохождении тока по коаксиальному кабелю Считают, что включение нервного импульса часто связано с локальным увеличением проницаемости мембраны для ионов натрия. В этом процессе могут играть определенную роль также и другие ионы, в частности Са +. Пассивное распространение электрических сигналов, обусловленное локальной деполяризацией мембраны, происходит, однако, только в случае очень коротких нервных клеток на длинные расстояния этим способом сигнал распространяться не может. В большинстве аксонов нервных клеток используется более эффективный способ проведения импульса, основанный на развитии потенциала действия. Потенциал действия — это импульс, проходящий вдоль аксона и специфически изменяющий за доли секунды (в нервах млекопитающих приблизительно за 0,5 мс) мембранный потенциал (рис. 5-6). Исходный отрицательный потенциал - 50—70 мВ быстро падает до нуля, затем достигает положительного значения 40—50 мВ, после чего снова устанавливается потенциал покоя. Поразительная особенность потенциала действия состоит в том, что он распространяется вдоль аксонов со скоростью 1 —100 м/с без снижения интенсивности. [c.370]

    Как может связывание гормона с рецептором на наружной поверхности клеточной мембраны влиять на хим.ические процессы внутри клетки Весьма вероятно, что в некоторых случаях рецептор пронизывает мембрану насквозь и контактирует с ферментом, связанным с внутренней поверхностью мембраны Изменение конформационного состояния рецепторного белка, обусловленное связыванием гормона, мо- [c.386]

    Здесь с , с — безразмерные концентрации ионов внутри и вне клетки, отнесенные к молярным концентрациям воды в соответствующих объема НО НО "к "N3 числа занятых ионами обменных центров фермента на единицу площади внутренней и внешней поверхностей мембраны,. 8 — площадь мембраны. Одновременно [c.350]

    Эти данные коррелируют со сродством этих веществ к липидам биомембран и свидетельствуют о том, что дегидратация внутриклеточной воды клетки начинается со связывания вспомогательного вещества с поверхностью мембраны. Из рисунка также следует вывод о том, что по способности диффундировать через мембрану изученные вещества располагаются в ряду ПЭО-600 < ПЭО-ЗОО < глицерин < пропиленгликоль. Т. е. осмотическая активность растворителей обратно пропорциональна коэффициенту диффузии растворителя через биомембрану. [c.569]

    Альтернативный метод выделения клеток из культуральной среды - фильтрация через мембрану. К сожалению, при обычной фильтрации клетки со временем забивают поры мембранного фильтра, накапливаются на его поверхности, и в результате скорость процесса быстро снижается (рис. 16.7, А). Фильтрацию можно ускорить, проводя ее под давлением, но это лишь временный эффект клетки все равно будут накапливаться на поверхности мембраны, а кроме [c.364]

    Картина стимуляции, или частота импульсов, — это, очевидно, жизненно важный фактор для распределения рецепторов на поверхности клетки, и этот же фактор влияет также на экспрессию генов, и затем клеточную дифференциацию путем индукции биосинтеза белка. Таким образом, набор ферментов быстрого мышечного волокна может быть создан в медленном волокне, если соответствующую картину стимуляции применять к нему достаточно долго [9]. Возможно, индуктором этого процесса является Са +, но это Всего ЛИШЬ Предположение. В любом случае у.меньшение количества рецепторов на определенной области поверхности мембраны при специфической картине стимуляции можно понять как характерное для дифференциации [c.266]

    Присоединяется к перегруппировке Успешная перегруппировка генов ведет к экспрессии тяжелых цепей 1 , являющихся частью мембранного рецептора (пре-В-рецептора) на поверхности большой пре-В-клетки по величине, подобной стволовой клетке. Она затем превращается в малую пре-В-клетку, внутри которой синтезируются ц-тяжелые цепи и начинается перегруппировка генов, кодирующих легкие цепи иммуноглобулина М. Для малых пре-В-клеток характерен низкий уровень экспрессии мембранных пре-В-рецепторов, не несущих функциональной нагрузки. В результате перегруппировки генов, кодирующих легкие цепи, малые пре-В-клетки превращаются в незрелые В-клетки, в которых экспрессированы легкие и тяжелые цепи иммуноглобулина М, представленного на поверхности мембраны лимфоцита. И наконец, образование зрелой В-клетки сопровождается образованием и перемещением на поверхность мембраны второго иммуноглобулина — В. [c.482]


    Процесс переноса (транслокации) идет сначала без изменения химической модификации субстрата, а затем на внутренней поверхности мембраны идет химическая модификация субстрата (8). Существуют системы, препятствующие взаимодействию (8) с внутренней поверхности мембраны, т.е. при их активации 8 не может выйти из цитоплазмы клетки, идет процесс концентрирования 8 в клетке. Например, 8 делается более гидрофильным и это свойство препятствует выходу 8 через мембраны в среду по механизму простой диффузии  [c.53]

    Вирус гриппа. Частицы вируса гриппа имеют диаметр 110 нм (рис. 4.5, Л). Нуклеокапсид, как и у вируса табачной мозаики, имеет спиральное строение, но он не палочковидный, а многократно закрученный (рис. 4.5, ). Нуклеокапсид окружен оболочкой-фрагментом мембраны клетки-хозяина, из которой вышел вирион. Оболочка имеет на своей наружной стороне шипы, которые служат для адсорбции вириона на поверхности новой клетки-хозяина и содержат мукопротеины и фермент нейраминидазу. Этот фермент отщепляет от мукопротеинов инфицируемой клетки один компонент-К-ацетилнейраминовую кислоту-и, по-ви-димому, играет определенную роль в разжижении слизи, покрывающей эпителиальные клетки носоглотки. Размножение вируса происходит внутри клеток. Освобождение вириона напоминает процесс почкования при этом наружная оболочка вирусной частицы образуется из мем- [c.138]

    Подгруппа 1А. Физиологическое значение ионов К+ и Ка+ связано с их различной адсорбируемостью на поверхности компонентов, входящих в состав земной коры. Соединения натрия лишь незначительно подвержены адсорбции, в то время как калия прочно удерживаются глиной и другими веществами. Мембраны клеток, являясь поверхностью раздела клетка — среда, проницаемы для ионов К" , вследствие чего внутриклеточная концентрация К" значительно выше, чем ионов Ыа+, В то же время в плазме крови концентрация Ыа+ превышает содержание в ней калия. С этим обстоятельством связывают возникновение мембранного потенциала клеток. Ионы К+ и Ка+ одни из основных компонентов жидкой фазы организма. Их соотношение с ионами Са + строго определенно, а его нарушение приводит к патологии. Введение ионов Ха+ в организм не оказывает заметного вредного влияния. Повышение же содержания ионов К+ вредно, но в обычных условиях рост его концентрации никогда не достигает опасных величин. Влияние ионов КЬ+, Сз+, Ь1+ еще недостаточно изучено. [c.283]

    Можно также использовать для изучения квантосом метод получения реплик с лиофилизированного материала [234]. Клетки или кусочки ткани (объемом около 0,1 мм ) пропитывают глицерином, чтобы предотвратить образование кристаллов льда, и быстро замораживают в жидком пропане. Образец помещают в условия высокого вакуума при —100° С и ножом микротома, охлажденным жидким азотом до —150 С, скалывают с него кусочки. Нож находится вблизи вновь образовавшейся поверхности около двух минут, так что часть льда, сублимируясь, оседает на нем. Благодаря этому на поверхности возникает рельеф — участки с более низким содержанием воды оказываются более выпуклыми. Путем напыления платино-углеродной пленки от электрической дуги с такой вытравленной поверхности делается реплика, после чего изготовляется электронная микрофотография. Брайтон [35] обнаружил, что если мембраны раскалываются не точно под прямым углом, то часть внутренней поверхности двойного слоя обнажается. В результате потери воды жидкая цитоплазма под изломанным краем мембраны сжимается и наружная поверхность мембраны становится видимой (особенно если процесс вытравливания длится достаточно [c.17]

    Механизм биохимической очистки можно условно разделить на три стадии 1) движение органического вещества из жидкости к поверхности микробной клетки 2) диффузия вещества через полупроницаемые мембраны в большинстве случаев. с помощью молекул-переносчиков — специальных коферментов 3) метаболизм диффундированных продуктов. При протекании третьей стадии в микробной клетке одновременно происходят два взаимосвязанных процесса — окисление органических веществ и синтез протоплазмы, т. е. бактериальной клетки. [c.305]

    С начала века уже известно, что между внешней и внутренней поверхностью мембраны клетки устанавливается разность электрических потенциалов ( рис. 5.1). Бернштейн впервые назвал его мембранным потенциалом, возникающим в связи с неравномерным распределением ионов на внешней и внутренней стороне клетки. Более подробному описанию этого явления способствовали две методологические находки в 1936 г. Янг открыл гигантский аксон кальмара, который стал своеобразным даром для работающих в области электрофизиологии, а в 1946 г. Грехам и Геранд усовершенствовали микроэлектрод — стеклянную трубочку (диаметр <1 мкм), заполненную концентрированным раствором электролита и вводимую в клетку без ее повреждения (рис. 5.1, а). Преимущество гигантского аксона кальмара связано с его размерами. Диаметр аксона равен [c.110]

    Синтез низина идет через образование низиноподобных белков — предшественников биосинтеза антибиотика, причем пре-врашение пренизина в низин происходит под действием фермента на внешней поверхности мембраны клетки лактококка. [c.210]

    Практически общий способ трансформации и трансфекции основан на том, что при обработке клеток бактерий a l2 их мембрана становится проницаемой для ДНК. Однако эффективность проникновения экзогенной ДНК в клетку довольно низка. Поэтому среди бактерий, подвергшихся трансформации, только небольшая часть оказывается трансформированной. Отделение ее от общей массы осуществляется в процессе клонирования. Для клонирования бактериальную суспензию определенной концентрации выливают на твердую питательную среду, например на агар с питательными добавками в чашке Петри из расчета 5—10 бактерий на 1 см поверхности. Бактериальная клетка на поверхности агара начинает делиться с образованием в итоге маленькой колонии, похожей на шляпку гриба. Эта колония называется клоном, причем из каждой клетки образуется свой клон, все клетки которого имеют свойства бактерии-родоначальника. [c.121]

    Клеточная мембрана — это не просто мешок. Она регулирует перенос низкомолекулярных веществ в клетку и из клетки. У бактерий с внутренней поверхностью мембраны связаны ферменты, катализирующие процессы окисления. Нередко бактериальные мембраны образуют складчатые участки, имеющие в разрезе вид многослойных структур это так называемые мезосомы (рис. 1-1 и 1-2, Г). Предполагается, что в мезосомах протекают специализированные процессы обмена веществ и репликация ДНК. В клетках Е. oli мезосомы выявляются не всегда, и все же, видимо, репликация ДНК у этого организма происходит на определенных участках поверхности мембраны и регулируется связанными с мембраной ферментами. Образование новой мембраны (перегородки) между делящимися клетками происходит синхронно с синтезом ДНК. [c.21]

    Изучение фотографических изображений клетки, полученных прн помощи микроскопа в разные моменты времени, позволили увидеть, что плазматическая мембрана, так же как и митохондрии и другие органеллы, постоянно находится в движении. Митохондрии скручиваются и поворачиваются, а поверхность мембраны постоянно совершает волнообразные движения. Пузырьки освобождают свое содержимое в окружающую среду, выводя его из клеток, а перенос веществ внутрь клетки осуществляется за счет процесса эндоцитоза (гл. 1, разд. Б.4). При помощи химических методов было показано также, что составляющие мембраны вещества транспортируются из эндоплаз1матического ретикулума в пузырьки аппарата Гольджи, в экскреторные гранулы и в плазматическую мембрану. Важным этапом биосинтетических процессов, протекающих в клетке, является присоединение углеводных (гликозильных) остатков к молекулам белка с образованием гликопротеидов и гликолипидов. Ферменты, катализирующие эти реакции, — гликозилтрансферазы (гл. 12)-—обнаружены в эндоплазматическом ретикулуме и в пузырьках а1ппарата Гольджи. Эти ферменты катализируют присоединение углеводных единиц (по одной в каждом акте реакции) к определенным местам молекул белков, липидов и других соединений, экскретируемых из клеток. Другие ферменты катализируют присоединение сульфатных и ацетильных групп к углеводным фрагментам молекул глико Протеидов. [c.356]

    Установлено, что как только 3-адренергический рецептор, расположенный на наружной поверхности мембраны эффекторной клетки, начинает взаимодействовать с норадреналином, на внутренней поверхности клеточной мембраны активируется фермент аденилатциклаза. Затем в клетке аденилатциклаза превращает АТФ в цАМФ последний в свою очередь способен оказывать влияние на метаболизм клетки. Этот сложный ряд последовательных реаюхий может быть заблокирован пропраноло-лом—веществом, препятствующим связыванию норадреналина с 3-адре-нергическим рецептором. [c.640]

    Перейдем к молекулярному рассмотрению. Как уже сказано, источником свободной энергии для активного транспорта служит АТФ. АТФ усиливает активный транспорт, будучи введена внутрь клетки, но ие влияет ка него, находясь во внешней среде. Цз клеточных мембран удалось выделить К, Na-активируемую АТФ-азу. Этот фермент расщепляет АТФ только в присутствии ионов К" " и Na" . Действие АТФ в мембране непосредственно связано с активным транспортом — глюкозид оубаин ингибирует АТФ-азу при той же концентрации, при которой он прекращает работу натриевого насоса. Гидролиз АТФ in vitro с помощью этой АТФ-азы происходит в две стадии. Вначале выделяется АДФ, а неорганический фосфат остается связанным с ферментом. Эта стадия активируется ионами Na"". Второй этап требует ионов К"" и состоит в отщеплении фосфата от фермента. Сходная, но уже пространственная асимметрия свойственна насосу — на внутренней поверхности мембраны его активность зависит от Na, на внешней — от При расщеплении АТФ на мембранах наблюдается переход меченого фосфата из АТФ в фосфопротеи-ды мембраны. Кинетика действия АТФ-азы in vitro характеризуется S-образной зависимостью скорости реакции от концентраций Na"", К+ и АТФ. Гидролиз одной молекулы АТФ в мембране сопровождается выходом из клетки двух-трех ионов Na"". [c.348]

    Б 1954 г. Герен исследовала образование миелина вокруг седалищного нерва эмбриона цыпленка [1]. Было установлено, что чпсло слоев зависит от возраста эмбриона и что на ранних стадиях прослеживается спиральная структура. На рис. 4.4 приведены результаты, полученные Герен на периферическом нерве, Вероятно, подобная ситуация происходит при миелиниза-цпи волокон центральной нервной системы аксон вызывает депрессию на поверхности шванновской клетки, которая начинает расти и образует спираль миелина вокруг него. Как было показано, на культуре ткани один виток завершается за 44 ч.. Увеличение числа витков спирали приводит к сжатию цитоплазмы, в результате чего плазматическая мембрана шванновской клетки становится значительно более плотноупакованной. Поэтому зрелая миелиновая оболочка представляет собой не- [c.94]

    Рис, 5, 16, Большое сопротивление ( 0 0ns) при контакте мнкроэлектро.ла с поверхностью мембраны достигается путем подведения полированного кончика электрода к поверхности клетки и всасывания мембраны в электрод. Получение внутренних и внешних участков мембраны для исследования их, мето-дом петч-клампа зависит от дальнейшей обработки. (Предоставлено В. Sak- [c.125]

    Два компоненту фотосинтетического аппарата — реакционные центры и электронтранспортные системы — всегда локализованы в клеточных мембранах, представленных ЦПМ и у большинства фотосинтезирующих эубактерий развитой системой внутрицитоплазматических мембран — производных ЦПМ (см. рис. 4). Локализация светособирающих пигментов в разных группах фотосинтезирующих эубактерий различна (табл. 22). У пурпурных бактерий, гелиобактерий и прохлорофит светособирающие пигменты в виде комплексов с белками интегрированы в мембраны (рис. 72, А). В клетках зеленых бактерий и цианобактерий основная масса све-тособирающих пигментов находится в особых структурах, прикрепленных к поверхности мембраны, но не являющихся ее компонентом. Это хлоросомы зеленых бактерий и фикобилисомы цианобактерий (см. рис. 4). [c.274]

    В результате транскрипции прежде всего образуются пре-мРНК, содержащие как С -, так и g-последовательности, что соответствует М- и D-классам иммуноглобулинов, локализованных на поверхности мембраны лимфоцита и имеющих идентичные антиген-связывающие участки. Вначале В-клетки синтезируют антитела М-класса, затем начинается синтез Ig D-класса или же одновременный синтез иммуноглобулинов М- и D-классов. Прекращение синтеза класса М и начало синтеза класса D или же любого другого класса иммуноглобулинов называется переключением классов. Переключение может происходить либо в результате рекомбинации генов, либо вследствие дифференциального сплайсинга мРНК. Рекомбинация переключения классов связана с необратимым изменением матрицы и осуществляется на стадии транскрипции. [c.487]

    Мы полагаем, что иммобилизация ферментов с помощью электроудерживания наиболее близка к закреплению и организации работы ферментов в клетке. Перемещающиеся ионы и электроны создают на биологических мембранах резко неоднородное электрическое поле. Неоднородность его усугубляется сложным строением поверхности мембраны, которая образуется различающимися по своим геометрическим и электрическим параметрам липидными и белковыми молекулами. Расположенные на мембране, способные к перемещению белки под воздействием такого поля устремляются в зоны большей напряженности и взаимодействуют по типу электроудерживания с встречающимися на их пути вмонтированными в мембрану белками и между собой. Так как перенос ионов и электронов по мембране — процесс дискретный, то и генерируемое ими электрическое поле имеет импульсный характер, что приводит к чередованию сближения и отталкивания молекул белка, к их колебательному, пульсирующему движению, необходимому для нормальной работы цепи ферментов. [c.183]

    Рнс. 18-8. Эта схема показывает, как трансмембранный градиент концентрашга ионов может быть сбалансирован градиентом напряжения. Плюсы означают К, плюсы в кружочке-Ма. Внут клетки концентрация К высокая, а снаружи низкая, тогда как концентрация Ыа снаружи выше, чем внутри. А. Здесь мембранные каналы свободно пропускают ионы К н ие пропускают На, позтому распределение ионов К между двумя сторонами мембраны равновесное, а ионов Ма -неравновесное. Небольшое количество ионов К выходит из клетки, и в результате у обеих поверхностей мембраны образуется заряженный слой (показан цветом). Выход иоиов калия продолжается до тех пор, пока возникшая разность потенциалов не уравновесит действие градиента концентрации К. При равновесии злектрохимичеСЕИЙ градиент К равен нулю суммарный поток иоиов К тоже равен нулю. Б. Здесь, наоборот, мембранные каналы свободно пропускают только На. В результате устанавливается противоположно направленная (по сравнению со случаем А) разность потенциалов, которая точно уравновешивает разность концентраШ1й ионов Ма по обе стороны мембраны. [c.78]

    В цитоплазме практически всех эукариотических клеток имеется очень сложный трехмерный лабиринт мембранных каналов - эндоплазматический ретикулум, многочисленные складки и разветвления которого заполняют всю цитоплазму (рис. 2-12). Пространства внутри эндоплазматического ретикулу-ма, называемые цисщернами, используются в качестве каналов, по которым осуществляется транспорт различных веществ, как правило, из клетки во внешнюю среду. Однако в некоторых клетках цистерны служат хранилищами запасенных питательнь1х веществ. Существуют два типа эндоплазматического ретикулума шероховатый и гладкий. Наружная поверхность мембраны шероховатого эндоплазматического ретикулума [c.38]

Рис. 2-12. А. Эндоцлазматический ретикулум (шероховатый) клетки поджелудочной железы Клетки этого типа очень активно синтезируют белки на рибосомах, прикрепленных к внешней поверхности мембраны, а затем секретируют их в цистерны. Слева видна часть митохондрии. Б. Отдельные рибосомы и цистерны при большем увеличении. В. Схема, иллюстрирующая трехмерную структуру эндоплазматического ретикулума. Видно, как из узких цистерн формируются сплощные яабиринтоподобные каналы, пронизывающие значительную часть цитоплазмы клетки. Рис. 2-12. А. Эндоцлазматический ретикулум (шероховатый) <a href="/info/100354">клетки поджелудочной железы Клетки</a> этого типа <a href="/info/809842">очень активно</a> <a href="/info/1345696">синтезируют белки</a> на рибосомах, прикрепленных к <a href="/info/431433">внешней поверхности</a> мембраны, а затем секретируют их в цистерны. Слева видна часть митохондрии. Б. Отдельные рибосомы и цистерны при большем увеличении. В. Схема, иллюстрирующая <a href="/info/99094">трехмерную структуру</a> <a href="/info/105632">эндоплазматического ретикулума</a>. Видно, как из узких цистерн формируются сплощные яабиринтоподобные каналы, пронизывающие значительную часть цитоплазмы клетки.
    Хотя хемиосмотическая гипотеза получила широкое признание в той своей части, которая касается главного организующего принципа передачи энергии от процесса переноса электронов к синтезу АТР в митохондриях, бактериальных клетках и хлоропластах (гл. 23), тем не менее она оставляет пока без ответа многие важные вопросы. Пожалуй, больше всего споров порождает вопрос о механизме, при помощи которого перенос электронов, происходящий во внутренней мембране, вызывает откачивание ионов Н из матрикса митохондрии наружу. Митчелл предложил остроумное решение этого вопроса (рис. 1). Основой его решения послужил тот факт, что восстановительные эквиваленты переносятся некоторыми переносчиками (например, убихино-ном) в виде атомов Н, а другими (например, железо-серными центрами или цитохромами)-в виде электронов. Митчелл предположил, что во-дородпереносящие и электронпереносящие белки чередуются в дыхательной цепи, образуя в ней три петли . В каждой такой петле два атома Н выносятся через мембрану наружу и отдают два иона Н в окружающую среду соответствующая пара электронов переносится затем обратно, с наружной поверхности мембраны на внутреннюю (рис. 1). Каждая пара восстановительных эквивалентов, проходя через такую петлю, переносит два иона Н из матрикса в окружающую среду. Предполагается, что каждая петля поставляет осмотическую энергию для образования одной молекулы АТР. [c.532]

    Белковолйпидные мембраны в клетках не похожи на стены дома или внутренние стены квартир. Их функции не ограничиваются чисто механической ролью, они активно участвуют в клеточных процессах, в передаче нервных импульсов и т. п. Так, известно, что мембраны клетки разделяют области внутреннюю и внешнюю, между которыми имеется разность потенциалов. Между двумя поверхностями мембраны обычно существует разность потенциалов порядка 70 мв, причем отрицательно заряжена внутренняя часть клетки. [c.197]

    Энергия активации для самодиффузии воды составляет 16,7—20,9 кДж/моль, в то время как Еа для диффузии воды через взрослую человеческую красную кровяную клетку (ККК) равна 25,1, а через липосомы яйцеклетки (фосфатидилхолина) (ФХ)—33,5—37,7 кДж/моль [7]. Таким образом, стадией, лимитирующей скорость переноса воды через биомембраны, является не только самодиффузия. Пассивная проницаемость растворимых неэлектролитов, содержащих частицы малых размеров, включает ряд последовательных стадий перенос через поверхность раздела, дегидратацию растворенного вещества и диффузию через углеводородные цепи. Ацильные цепи образуют свернутые конформации и создают свободный объем, в котором могут размещаться растворенные вещества. От поверхности мембраны к ее центру полярность уменьшается, а подвижность возрастает. Коэффициенты проницаемости для ионов и гидрофильных растворенных веществ через биомембраны намного ниже, чем для воды или неэлектролитов с малыми частицами. Это обусловлено большим значением Д/- (ж 167 кДж/моль), требуемым для переноса иона из водного раствора с диэлектри- [c.327]


Смотреть страницы где упоминается термин Поверхность и мембраны клеток: [c.266]    [c.378]    [c.355]    [c.357]    [c.71]    [c.637]    [c.429]    [c.184]    [c.276]    [c.129]    [c.132]    [c.267]    [c.66]    [c.53]    [c.177]    [c.102]   
Смотреть главы в:

Жизнь микробов в экстремальных условиях -> Поверхность и мембраны клеток




ПОИСК





Смотрите так же термины и статьи:

Клетки поверхность



© 2024 chem21.info Реклама на сайте