Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Питание и метаболизм

    По словам В. И. Вернадского, история химических элементов в земной коре сводится к их разнообразнейшим перемещениям, которые называются миграцией. Миграция — это движение атомов при образовании их соединений, переносы их в движущихся жидкостях, в газах, в твердых телах, при дыхании, питании, метаболизме организмов и т. д. Именно диалектический методологическй подход—понимание движения как основы всех других проявлений геохимического поведения атомов и в первую очередь их распределения в земной коре —позволил В. И. Вернадскому дать глубокий анализ геохимических проблем. [c.207]


    Кинетическая модель характеризует скорость развития общей численности популяций Л как функции комплекса параметров внешней среды ж (концентрации субстрата и продуктов метаболизма, состава минерального питания, температуры, pH и др.) и вектора параметров модели 0  [c.137]

    К внешним воздействиям (факторам) относятся концентрации субстрата, продуктов метаболизмов, элементов минерального питания, температура, pH среды и др. [c.100]

    Наряду с закрытыми системами существуют открытые системы, в которых осуществляется обмен веществом с окружающей средой. Такие системы используют в некоторых случаях при проведении химических реакций. К ним относятся живые организмы, начиная с простейших одноклеточных. Общеизвестно, что неотъемлемой чертой живой материи является обмен веществ, т. е. поступление в организм продуктов питания, а в огромном числе случаев также и кислорода, и вывод из организма вредных продуктов метаболизма В открытых системах изменение количества молей каждого компонента складывается из двух частей — изменения в результате химического процесса и изменения при переносе вещества через границу системы. [c.167]

    Примем, что состояние популяции изменяется в некоторой среде под действием внещних воздействий Zj(t) (/=1, 2,. .., I), где I — число внещних воздействий, характеризующих состояние среды. К параметрам внещних воздействий относятся концентрации субстрата, элементов минерального питания, концентрация продуктов метаболизма, температура, pH среды и др. [c.55]

    Согласно развиваемому системному подходу к анализу сложной совокупности процессов на микро- и макроуровнях, к эффектам, определяющим поведение системы на макроуровне, относится массопередача. Массообменные процессы в биореакторе непосредственно влияют на рост микроорганизмов, определяя скорость транспорта питательных веществ к клеткам и отвод продуктов метаболизма в среду в количестве, соответствующем стехиометрическим коэффициентам. Наибольший практический интерес, с точки зрения ограничения скорости процесса ферментации, представляют такие элементы питания, как кислород и углеродсодержащий субстрат, учитывая большую удельную потребность в них клеток, низкую растворимость в культуральной жидкости и присутствие в ферментационной среде в виде дисперсных фаз. [c.87]


    Отсутствие в пище витамина С, который обильно содержится в цитрусовых и шиповнике, приводит к развитию цинги. Этот витамин регулирует метаболизм железа и некоторых аминокислот. Даже при достаточном количестве железа в пище в случае недостатка витамина С оно полностью не усваивается. Этот пример иллюстрирует сложность диагностики заболеваний, вызванных неполноценным питанием, и показывает, что биохимические процессы тесно связаны между собой. Характерно, что индивидуальная потребность [c.488]

    Улучшение питания железом через корневую систему или через листья проявляется прежде всего в повышении содержания хлорофилла и позеленении листьев Следствием этого является усиление фотосинтеза, улучшение общего состояния растений за счет более интенсивной ассимиляции СОг и нормализации процессов метаболизма, увеличение прироста побегов и площади листьев, числа полноценных побегов, повышение плодоносности зимующих почек. [c.483]

    Отдельные исследования коснулись некоторых белковых компонентов (ферментов), связанных с обменом веществ (в основном с углеводным метаболизмом) этих органов растений. Скудность сведений по сравнению с имеющейся информацией по зерновым (хранение запасных белков) или по листовой зеленой массе (синтез органических веществ за -счет функционирования хлорофилла) можно объяснить второстепенной ролью клубней в растительном мире. Недостаточность информации может быть связана также с относительно низким содержанием белков в таких органах растений и трудностью работы с этими органическими веществами, стабильность и однородность которых трудно обеспечить в лабораторных условиях. Кроме того, большинство видов растений, образующих клубни, происходят из тропиков и поэтому отдалены от лабораторий, которые могут заинтересоваться их местным использованием как источником питания, а не как экспортным товаром это обстоятельство ограничило масштабы таких исследований, В отношении других продуктов того же тропического происхождения, но являющихся предметом экспорта, например каучука, какао, кофе, положение иное вероятно, эта область поглотила весь наличный исследовательский потенциал [53], [c.269]

    Поскольку в живых организмах белки встречаются повсеместно, а также служат важным источником питания, может показаться удивительным, что некоторые из них чрезвычайно токсичны.. Однако подобно тому, как ничтожно малые концентрации пептидных гормонов способны к модуляции клеточного метаболизма, полипептиды соответствующей структуры способны блокировать клеточную активность посредством, например, связывания с рецепторами на мембране. [c.570]

    Питательная (резервная) функция. Эту функцию выполняют так называемые резервные белки, являющиеся источниками питания для плода, например белки яйца (овальбумины). Основной белок молока (казеин) также выполняет главным образом питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма. [c.21]

    Все физические и химические процессы, связанные с построением содержащихся в организме веществ из продуктов питания (углеводов, жиров и белков), а также с превращением таких веществ и разрушением химических соединений в организме описывают общим термином обмен веществ (метаболизм). Для веществ, которые имеют значение при обмене веществ и в процессе роста организма, обычно используют термин метаболиты. [c.698]

    Бактерии в корневой зоне растений, используя корневые выделения, в известной мере играют роль санитаров, очищая зону корня от продуктов метаболизма растений. Минерализуя органические остатки, они в то же время переводят ряд элементов питания в доступную для растений форму. Отдельные виды бактерий, развивающиеся на корнях, продуцируя ростовые вещества и витамины, могут оказать положительное влияние на рост растений. Однако необходимо отметить, что многие бактерии, развивающиеся в корневой зоне и на корнях, обладают денитрифицирующей способностью и в определенных условиях могут вызвать большие потери азота из почвы. [c.178]

    Каждый тип энергетического метаболизма может осуществляться на базе различных биосинтетических способностей организма. Выше уже обсуждалось деление всех прокариот в зависимости от особенностей конструктивного метаболизма на две группы авто- и гетеротрофов. Следовательно, можно выделить 8 сочетаний типов энергетического и конструктивного метаболизма, которые отражают возможности способов существования (питания) прокариот (табл. 12). Всем способам питания соответствуют реально существующие прокариотные организмы. Однако число [c.109]

    В рамках разобранных выше основных способов питания, определяющих возможности существования прокариотных организмов, в мире прокариот обнаружено множество типов (форм) жизни. Тип жизни — понятие, отражающее, с одной стороны, специфику процессов энергетического метаболизма, с другой — специфику процессов конструктивного метаболизма, присущую определен- [c.111]


    Эффективность работы ферментатора определяется прежде всего необходимой интенсивностью перемешивания Перемешивающие устройства служат для сохранения равномерного температурного поля по всему объему аппарата, своевременного подвода продуктов питания к клеткам и отвода от них продуктов метаболизма, а также интенсификации массопередачи кислорода [c.303]

    Альдольная конденсация известна и в биологических системах При недостатке глюкозы и углеводного питания организм восполняет потребность в глюкозе путем биосинтеза последней из глицерина и пирувата или лактата (пиро-виноградной или молочной кислоты), продуктов метаболизма жиров и белков Глицерин через ряд ферментативных процессов превращается в диоксиацетонфосфат, а пи- [c.588]

    В настоящ ее время расширяется область практического использования нуклеотидов в различных сферах народного хозяйства, растет интерес к созданию и разработке лекарственных форм производных нуклеозидов и нуклеотидов, которые становятся эффективными средствами метаболической терапии, в медицине широко используются производные аденозина, АТФ, а также синтетические аналоги нуклеозидов. Перспективно используются некоторые пуриновые нуклеотиды в пищевой промышленности, они способны улучшать вкусовые свойства продуктов питания. Остановимся более подробно на строении, синтезе и метаболизме нуклеотидов и нуклеозидов. [c.417]

    В. Биологическое разделение рацемических смесей. Если живой организм использует для питания рацемическую смесь, то, как установлено, очень часто в метаболизм включается только один энантиомер. При такой ситуации изомер, ненужный для живого организма, иногда можно выделить. Когда крысам скармливают рацемическую смесь мевалоновой кислоты (3,5-дигидрокси-3-метилпентановая кислота), то один оптический изомер полностью поглощается, а второй почти весь выделяется с мочой, из которой его можно регенерировать. [c.198]

    Один из методов повышения производительности биореакторов в технологии биосинтеза связан с так называемым "высокоплотностным культивированием" микроорганизмов, которое реализуется при проведении процесса по специальной программе с подпиткой субстратом в периодическом режиме культивирования [24]. Это повышает концентрацию клеток микроорганизмов в среде культивирования и при поддержании неизменной удельной скорости биосинтеза общую производительность биореактора. Однако такой процесс требует тщательного выдерживания необходимых параметров биосинтеза (прежде всего текущей концентрации органического субстрата и концентрации растворенного кислорода, а также pH и содержания минеральных компонентов питания). Кроме того, питательные субстраты должны подаваться в биореактор в концентрированном виде. Процесс с подпиткой был бы одним из наилучших решений при биологическом обезвреживании концентрированных токсичных стоков и отходов, поскольку он может привести не только к увеличению производительности биореактора, но и к уменьшению объема вторичных стоков и отходов со стадии биологической очистки, Однако применительно к переработке токсичных соединений возможности тфоцесса с подпиткой резко ограничиваются из-за образования побочных продуктов метаболизма, ингибирующих процесс окисления. Так, в наших экспериментах в обычными консорциумами фенолдеструкторов ингибирование окисления в режиме с [c.235]

    Представление об основных биохимических процессах, происходящих в клетках, на примере сапрофитных микроорганизмов с аэробным типом питания [2], дает упрощенная схема метаболизма на рис. 1.2. Даже в таком упрощенном виде схема позволяет оценить многообразие и сложность внутриклеточных процессов, насчитывающих несколько тысяч реакций, в результате которых синтезируются клеточные вещества. Математическое описание всей совокупности данных реакций и использование такой модели для практических целей представляет собой чрезвычайно сложную задачу. Наряду с микробиологическими процессами, направленными на образование биомассы микроорганизмов или ценных продуктов клеточного метаболизма большую роль в БТС занимают процессы биологической очистки, протекающие с участием бактериальных клеток по следующей трофической схеме органические загрязнениям бактерии-> простейшие. В процессе биологической очистки сточных вод, содержащих органические и минеральные вещества, формируется биоценоз активного ила, включающий бактерии, простейшие и многоклеточные организмы. В процессе потребления органических загрязнений происходит интенсивный рост бактерий и ферментативное окисление органических веществ. По мере удаления из среды питательных веществ происходит эндоген- [c.10]

    Технологическую основу БТС составляет процесс культивирования микроорганизмов — ферментация. При этом биофаза потребляет продукты питания — минеральную питательную среду и субстрат, перерабатывает их клеткой и выделяет в среду метаболиты. В результате обмена веществ происходит синтез внутриклеточных веществ, рост клетки (увеличение биомассы) и ее развитие (морфологические и физиологические изменения). Рост и развитие популяции микроорганизмов являются результатом сложнейшей совокупности физиологических, биохимических, генетических и других внутриклеточных процессов. Кроме того, важное место занимают процессы физической природы — перенос массы, энергии, количества движения из окружающей среды к клеткам и обратно. Таким образом, процесс ферментации можно рассматривать как определенным образом организованное развитие популяции микроорганизмов во взаимодействии с окружающей средой (ферментационной средой). Ферментационная среда, содержащая микробные клетки, компоненты минерального питания, субстрат, продукты клеточного метаболизма представляет собой многофазную систему, в которой протекают физиолого-биохимические и физико-химиче-ские процессы. К особенности данной среды относится сложный характер взаимодействий между ее составляющими. [c.51]

    В результате процессов тепломассообмена и гидродинамического взаимодействия к клеткам поступают необходимые для роста и развития микроорганизмов компоненты питания. Выделяемые в среду продукты л етаболизма могут оказывать непосредственное влияние на кинетические закономерности роста клеток, например эффекты ингибирования скорости роста. Продукты клеточного метаболизма (от альдегидов и кетонов до веществ белкового [c.51]

    Пожалуй, наиболее перспективным методом получения оптически чистых (т. е. энантиомерно гомогенных) а-аминокислот является использование биологических систем. Подобный подход основан на том, что организму дают в качестве источника питания оба энантиомера аминокислоты, но метаболизму подвергается только ь-энантиомер, а с-энантиомер обычно выделяется (чаш,е всего с мочой). [c.392]

    Накопление Г в клетках бактерий характеризует их стрессовое состояние, вызванное ухудшением условий роста, и инициирует перестройку метаболизма бактерий, необходимую для адаптации клеток к дефициту аминокислот и др источников питания При зтом подавляется синтез рнбосомных и тРНК, транскрипция генов, кодирующих структуру рибосомных белков и белковых факторов трансляции, транспорт углеводов, синтез липидов и дыхание Одновременно усиливается транскрипция оперонов, ответственных за биосинтез аминокислот, и ускоряется распад клеточных белков [c.618]

    Мол. ион пептида распадается в результате разрыва связей СН—СО, СО—NH, КН—СН и СН—К с образованием осколочных ионов соотв. А и Х , В и У , С и 2 , 8 и К (я-номер аминокислотного остатка в пептидной цепи), к-рые далее распадаются таким же образом. Общее кол-во пиков ионов в таком спектре может достигать неск. сотен. Кол-во фрагментов определяется строением исследуемой молекулы, запасом внутр. энергии мол. и осколочных ионов и промежутком времени между образованием иона и его детектированием. Поэтому при интерпретации масс-спектров необходимо учитывать как условия измерений (энергию ионизирующих электронов, ускоряющее напряжение, давление паров в ионном источнике, т-ру ионизац. камеры), так и конструктивные особенности прибора. При макс. стандартизации условий измерений удается получать достаточно воспроизводимые масс-спектры. Сравнение масс-спектра исследуемой системы со спектром, имеющимся в каталоге,-наиб, быстрый и простой способ структурного анализа, идентификации в-в при определении загрязнения окружающей среды, контроле продуктов питания человека и животных, изучении процессов метаболизма лек. препаратов, в криминалистике и т.д. Однако идентификация лишь на основании масс-спектра не может быть однозначной, напр, не Все изомерные в-ва образуют различающиеся масс-спектры. [c.662]

    Естественные процессы утечки горючих ископаемых из залежей и биологическая активность приводят к гораздо большему загрязнению окружающей среды углеводородами, чем это способны сделать автомобильные выхлопные газы и случайно пролитая нефть. Окисление и метаболизм углеводородов также могут осуществляться в результате естественно протекающих процессов. Однако типичные проблемы загрязнения возникают в тех случаях, когда локальное повышение концентрации отходов в плотнонаселенных районах превышает возможности их переработки либо когда на нескольких квадратных километрах поверхности океана разливается нефть. В природе происходит образование больших количеств моноксида углерода и оксидов азота. В скальных породах, почве и естественных источниках воды могут встречаться тяжелые металлы. Полностью освободиться от них не только невозможно, но даже и нежелательно. Оксиды азота, образующиеся во время грозовых разрядов, приводят к появлению нитратов, которые являются продуктами питания для растений, а многие из тяжелых металлов в микродозах необходимы для нормального развития растений и поддержания жизни животных. [c.505]

    Суточная потребность около 2 мг в день. Вследствие широкого распространения рибофлавина в продуктах питания у людей редко наблюдается его недостаточность, при которой в первую очередь поражаются глаза и кожа. В промышленности большие количества рибофлавина получают при помощи грибов (таких, как ЕгетоШесшт азкЬу1), которые, по-видимому, из-за каких-то нарушений метаболизма, вырабатывают витамин в таком изобилии, что он кристаллизуется в культуральной среде. [c.256]

    Совершенно другая ситуация наблюдается у взрослого человека, организм которого практически не растет. Метаболизм многих частей такого организма может сильно меняться во времени и в зависимости от физиологического состояния. Организм может, например, резко переходить от нормального питания к голоду или от состояния покоя к тяжелой нагрузке. Метаболизм при сильных нагрузках отличается от ме таболизма при нормальной работе. Рацион, включающий жирную пищу, требует совсем другого метаболизма, чем диета, включающая большое количество углеводов. Необходимые механизмы регуляции должны в этих случаях быстро и легко реагировать на такие изменения. В следующих разделах мы рассмотрим некоторые из способов регулирования расщепления и биосинтеза углеводов и липидов в организме животных. [c.503]

    Факторы, влияющие на метаболизм диазепама. Как было показано, метаболизм диазепама протекает различными путями с образованием в организме человека и экспериментальных животных множества метаболитов. Скорость реакций и их относительная важность зависят от многих факторов, в результате чего происходят изменения картины метаболизма и фармакологической активности исходного препарата. Факторы по своему происхождению могут быть генетическими, физиологическими или связанными с изменением окружающей среды. К генетическим факторам относятся видовые различия, котдрые были уже рассмотрены, и внутривидовые, которые будут обсуждаться в разделе, посвященном мётаболиз> у и фармакокинетике нитразепама. Физиологические факторы определяются возрастом, полом, типом питания, беременностью и различ -ными паталогическими состояниями. Среди факторов окружающей среды, имеющих непосредственное отношение к обсуждаемой п б-леме, можно выделить стресс, возникающий из-за неблагоприятных условий, и воздействие на организм других чужеродных соедн нений. [c.171]

    Таким образом, на базе хемоорганогетеротрофного способа питания можно вьщелить несколько типов жизни, представленных определенными группами прокариот, осуществляющими конкретный тип энергетического метаболизма в сочетании с присущими им особенностями метаболизма конструктивного. [c.112]

    Роль ГМЦ в питании, видимо, многообразна, хотя изучена весьма мало. Они оказывают влияние на липидный обмен и, в силу сорбциоииых свойств, на содержание холестерина, холие-ных кислот в крови, снижают концентрацию ионов тяжелых металлов, постепенно удаляя их из пищеварительного тракта, сорбируют различные белковые вещества и продукты их метаболизма, изменяя скорость их ферментации, сорбируют микрофлору, в том. числе патогенную, и др. [c.255]

    Питание и диета. Активность энзимов метаболизма чужеродных соединений отчетливо зависит от питания животного. У мышей голодание приводит к уменьшению скорости гидроксилирования одних ксенобиотиков и увеличению других. У крыс, содержащихся на диете с дефицитом белка, наблюдается уменьшение активности энзимов монооксигеназных систем. [c.525]

    Общей причиной автолиза для микроорганизмов любого таксона является исчерпание источников питания и энергии. Другая общая причина - накопление в среде роста продуктов метаболизма, токсичных для клетки. Но бывают ситуации, когда культура имеет достаток питания и клетки не выделяют токсичных веществ. Например, этот тип обмена характерен для автотрофно растущих водородокисляющих бактерий. Однако цикл развития их культур также завершается автолизом клеток. Побудительной причиной автолиза в этом случае является пороговое повышение уровня внеклеточных ауторегуляторов с функциями аутоиндукторов автолиза. К ним относятся факторы da бактерий и дрожжей и факторы AMI миксобактерий. Действующим началом тех и других являются свободные ненасыщенные жирные кислоты, которые дестабилизируют клеточные мембраны. [c.76]

    Некоторые микроорганизмы не способны полностью обеспечить собственный метаболизм за счет своих синтетических возможностей и нуждаются в наличии минимально одного органического соединения (обычно нужны аминокислоты как источник углерода и азота или углеводы в качестве источника углерода) в окружающей среде. Гетеротрофные (от греч. hetera, другой, + trophe, питание) бактерии в качестве источников углерода используют различные углеродсодержащие соединения - гексозы, многоатомные спирты, аминокислоты, органические кислоты и углеводороды, [c.445]

    Для биостойких материалов, не обладающих биоцидными свойствами, причиной их обрастания и повреждения грибами являются загрязнения. Споры фибов, попадая на материал, не содержащий никаких источников питания для микроорганизма (стекло, металл), способны прорасти и образовать микроколонии только за счет питательных веществ, содержащихся в самих спорах. Дальнейшему росту мицелия способствуют вещества, загрязняющие материал, - остатки растений, насекомых, небиостойкие смазочные материалы, частицы почвы. Продукты метаболизма фибов изменяют структуру материала, делая его доступным для микроорганизмов. На отмирающих колониях могут поселиться другие виды фибов и бактерий. [c.83]


Смотреть страницы где упоминается термин Питание и метаболизм: [c.192]    [c.106]    [c.157]    [c.427]    [c.47]    [c.614]    [c.1018]    [c.345]    [c.106]    [c.110]    [c.414]    [c.70]    [c.514]   
Смотреть главы в:

Жизнь микробов в экстремальных условиях -> Питание и метаболизм




ПОИСК





Смотрите так же термины и статьи:

Метаболизм

Питание



© 2025 chem21.info Реклама на сайте