Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол производные, спектры ЯМР

    Область 4000—2000 см-К Колебательная частота С—Н производных тропона является полосой со слабой интенсивностью и лежит в области 3060—ЗОЮ см К Она сходна с соответствующей полосой колебаний С—Н в производных бензола. В спектре тро полонов наблюдается перегиб кривой, переходящий в максимум при 3210 (твердый) или 3140 см (раствор), который лежит ниже, чем нормальная частота связей О—Н (3600 см ). [c.368]


    Индолы. Производные индола при ЭУ ведут себя аналогично замещенным бензолам. Масс-спектр самого индола в качестве максимального содержит пик М+ , малохарактерный распад которого включает последовательное элиминирование H N и Н, а также H N, Н и С2Н2 [51]. [c.60]

    На рис. 16-6 представлено несколько характерных инфракрасных спектров простых производных бензола. [c.640]

    Производные бензола. В спектрах ЭПР облученных производных бензола [304—308] наблюдаются сигналы в основном двух типов  [c.253]

    Показано, что при общем значительном сходстве спектров поглощения изомеров одинакового строения, представляющих собой метильные или циклогексильные, или смешанные метильно-циклогексильные производные бензола, эти спектры обладают рядом отличительных признаков. При исследовании спектров поглощения этих соединений на одном и том же приборе и в одних и тех же условиях эксперимента, полученные данные могут быть использованы для идентификации отдельных веществ. [c.510]

    ИНФРАКРАСНЫЕ СПЕКТРЫ ПРОИЗВОДНЫХ БЕНЗОЛА [c.636]

    Подтверждением этих выводов являются исследования взаимодействия АШгз с метилбензолами методом комбинационного рассеивания света, которые показали, что в бензоле, толуоле, /г-ксилоле в широком интервале температур изменений в спектрах не наблюдается. У других производных бензола при низких температурах снижается интенсивность линии 210 см и усиливается новая линия — 197 см , причем природа ароматического соединения определяет лишь температурный интервал изменения спектра. Слабая электрическая проводимость указывает на отсутствие ионных форм. На основании этих и ряда других данных сделан вывод о существовании л-комплексов следующих структур [(а)—симметричный неионизованный (б)—более прочный поляризованный комплексы]  [c.80]

    В масс-спектрах производных бензола пики молекулярных ионов весьма интенсивны, что облегчает установление распределения по молекулярным весам. Этому способствует сравнительно малый разброс величин коэффициентов чувствительности для изомеров с одинаковым числом углеродных атомов в молекуле и отсутствие наложений на аналитические пики со стороны других групп. При расчетах необходимо учитывать наложения иа пики иоиов с массами 78 и 92 со стороны высокомолекулярных алкилбензолов Сю—С12 поправочные коэффициенты приведены в табл. 15. [c.146]

    В ИК-спектрах отчетливо проявляется поглощение в области 1350—1235, 1040, 870 и 740 см , которое соответствует бицикли-ческим ароматическим системам, и в области 815—740 см , отвечающее тризамещенным производным бензола. Поглощение при 1165 см соответствует третичному атому углерода, а поглощение в области 710—690 см характерно для бензольного кольца с алифатическими цепями с числом углеродных атомов не менее шести. Интенсивное поглощение в области 1725—1620 см указывает на присутствие значительных количеств карбонильных групп. Поглощение в области 1030 см может относиться к колебаниям групп —С—О—С—. Имеются также полосы, указывающие на присутствие группы —ОН (3400—3500 см"1). Полученные данные свидетельствуют о значительном удельном весе циклических структур в составе смол. [c.93]


    Согласно теории поглощения, сила осциллятора связана с вероятностью перехода и приближается к единице лишь для самых сильных электронных переходов. Такой высокой сила осциллятора бывает очень редко. Например, для Си + она равна 10 а для полосы поглощения толуола, представленной на рис. 13-6, - 2-10 . Низкая интенсивность полос поглощения производных бензола определяется тем обстоятельством, что для идеально симметричных молекул эти переходы являются запрещенными. Переход Ьь для бензола становится слабо разрешенным лишь вследствие сопряжения с асимметричными колебаниями кольца. В спектре бензола линия, соответствующая переходу О—О, отсутствует разрешены лишь последующие линии, отвечающие дополнительному поглощению энергии несимметричных колебаний, равной 520 см . Благодаря асимметрии колец толуола и фенилаланина, обусловленной наличием в них замещающих групп, О—0-переход становится разрешенным и сила осциллятора принимает более высокое значение, чем у бензола. Ьа-переход бензольных производных также частично запрещен правилами отбора, и лишь для третьей полосы сила осциллятора приближается к единице. [c.19]

    Б заключение главы будут приведены инфракрасные спектры и спектры ядерного магнитного резонанса производных бензола. [c.591]

    СПЕКТРЫ ЯМР ПРОИЗВОДНЫХ БЕНЗОЛА  [c.640]

    В процессе исследования сланцевого керосина возникла задача идентификации тиофенов с молекулярным весом 126— 154. Так как известно лишь небольшое число соединений такого типа, то метод прямого сравнения оказался непригодным. Рассмотрение масс-спектров тиофенов и гомологов бензола позволило установить зависимость между распределением интенсивностей пиков ионов и положением заместителей в кольце. Характерными оказались максимальный пик, пик молекулярного нона М+, ппк на единицу меньше молекулярного (М—])+, пик ионов (М—31)+ и пики ионов с массами 85,84, 79, 78, 59, 43, 41. Например, в масс-спектрах 2,5-диметилтио-фена и изомеров метилтиофена максимальные пики соответствуют ионам (М —1)+ с массой 111 и 97, соответственно. При замене метильного радикала на этильный появление максимальных пиков обусловлено образованием ионов (М—15)+ с массами 97 (2-этилтиофен), 125 (2,5-диэтилтиофен) и 153 (2, 3, 5-трнэтилтиофен). В отличие от производных тиофена в спектрах алкилбензолов, содержащих как метильные, так и этильные радикалы, максимальные пики соответствуют ионам (М—15)+ с массами 91 (1, 4-диметилбензол, этилбензол), 119 (1, 4-диэтилбензол) и 153 (1,3,5-триэтилбензол). Комбинируя эти корреляционные признаки с особенностями масс-спектров производных тиофенов,полученных метилированием и гидрированием, а также ртутных производных, удалось установить структуру гомологов тиофена в диапазоне молекулярных весов 126—154 и моно- и дизамешенных бензолов с молекулярным весом 120—148. [c.119]

    Среди исследованных авторами соединений обнаружены только единичные исключения из этого правила, касающиеся метильных производных бензола. Так, спектр п-ксилола сдвинут в длинноволновую сторону относительно спектра 1,4-дициклопентилбензола (рис. III) спектр мезитилена практически совпадает по положению максимумов со спектром 1,3,5-трициклопен-тилбензола. Величина сдвига между спектрами циклогексил- и циклопен-тилбензолов достигает для некоторых типов замещения 40—45 А. [c.13]

    Расположение спектров в таблицах таково. В табл. 1. 1 помещены спектры бензола, далее — спектры монозамещенных его гомологов (в порядке утяжеления заместителя), затем спектры дву-, три-, тетра- и гексазамещенных гомологов бензола (в порядке утяжеления боковых цепей). В последней таблице в качестве примера бензольных производных, в боковых связях которых есть двойные связи, сопряженные с кольцом, приведены спектры стирола и 2-метил-1-фе-нилпропена. [c.267]

    По брутто-формуле можно заключить, что на рисунке приведен спектр азотсодержащего производного бензола. Это может быть -метиланилин или один из изомерных толуидинов. Так как в области резонанса ароматических протонов спектр имеет вид типичной системы АВ, можно заключить, что на рисунке приведен спектр я-толуидина. Синглетные сигналы при 2,2 и 3,25 м. д. соответствуют протонам метильной и аминной групп. [c.299]

    Спектры небензольных ароматических углеводородов в значительной мере напоминают спектры производных бензола. УФ-спектры слул ат валжым критерием ароматичности того или иного соединения. Например, трополон и его производные поглощают в области 220— 250 ммк (е 30 ООО) и 340—375 ммк (е 8000), и в последней группе полос наблюдается тонкая структура, характерная для ароматических систем  [c.27]

    При гидролитическом и термическом разложении комплекса XIII выделяется соединение (СеН ) ( г = 6 в бензоле). ИК-спектр этого комплекса сильно отличается от соответствующего производного циклооктатетраена. [c.131]

    Пример 2. На рис. 1,12 приведен ИК-спектр соединения с молекулярным весом 106. В самом начале области валентных колебаний двойных связей—около 1500 см — имеется очень интенсивная полоса, которая в сочетании с неразрешенными полосами 1580 и 1600 смявляется характерным признаком ароматического кольца. Предположение о наличии ароматического кольца подтверждается сильным поглощением в области 3000—3100 см — области валентных колебаний водорода при 5р -гибридных углеродных атомах. Соединение содержит и алкильт1ые радикалы (боковые Цепи у ароматического кольца), о чем свидетельствуют сильное поглощение в интервале 2800—3000 см (л н-с з), а также полосы соответствующих деформационных колебаний при 1470 и 1385 см . В области 1650—2000 см имеются вая ные для определения числа и положения заместителей слабые полосы поглощения. Контур повторной записи этих полос на повышенной толщине слоя характерен для орго-дизамещенных (ср. рис. 1.9). Очень сильная полоса неплоскостных деформационных колебаний ароматического водорода при 750 см- также характерна для о/зго-дизамещенных производных бензола. В спектре не наблюдается характеристических полос водородсодержащих функциональных групп ОН, ЫН, 5Н. Возможность присутствия галогенов, эфирных, тиоэфирных и третичноаминных групп исключается сравнительно низким молекулярным весом при наличии бензольного кольца и алкильных радикалов. По-видимому, исследуемое соединение—ароматический углеводород, и тогда молекуляр-26  [c.26]


    И его алкильные производные. Полученные при этом в достаточно высоких концентрациях ароматические анионы-радикалы хорошо поддаются исследованию методом ЭПР [17]. В случае аниона бензола спектр ЭПР состоит из семи компонент (см. рис. 73), что указывает на равную вероятность локализации спина на любом из атомов углерода бензольного кольца. В случае толуола, этилбензола и других моноалкильных производных спектр состоит из пяти основных компонент (см. рис. 74), обусловленных взаимодействием спина с четырьмя эквивалентными протонами. Это означает, что плотность спина на атоме углерода в пара-наложении весьма невелика. Вывод о том, что в основном СТ расщеплении не участвует именно атом водорода в пара-положении, подтверждается тем, что спектр ЭПР иона пара-ксилола состоит из таких же пяти компонент, как и в случае ионов моноал-килзамещенных бензолов. Причина выключения пара-положения при введении алкильного заместителя представляет очень интересный теоретический вопрос. Некоторые соображения по этому поводу высказаны в последних статьях МакКоннела [18]. Для нашего изложения существенно лишь то, что в ион-радикалах (Н СбНа) в основном СТ расщеплении участвуют лишь четыре протона фенильного кольца. [c.154]

    Обсуждение спектров поглощения бензолсульфоновой кислоты и ее производных. Спектр поглощения бензолсульфоновой кислоты вполне отвечает спектрам поглощения производных бензола, образованных замещением водорода в ядре ж-ориен-тирующими группами ЫОз, СНО, СОСН3, СООН. При сравнении спектра поглощения бензолсульфоновой кислоты со спектрами поглощения ацетофенона, подробно исследованного Валяшко и Розумом[ ] и бензойной кислоты, исследованной Кастилль и Клингштедтом [ 1], можно видеть общее сходство и частные отличия кривых поглощения. [c.590]

    Во всех случаях в остатке обнаружены валентные колебания группы ОН фенольной или спиртовой (v=3600 см ), деформационные колебания связи С—Н производных бензола моно-, ди-и тетразамещенных (v = 695, 710, 810 см соответственно). Наи-больщие интенсивности полос, соответствующих указанным связям, обнаружены в дифференциальных спектрах остатка и во фракции 3, которая является наиболее трудноокисляемой. Таким образом, во фракциях, содержащих ингибитор окисления, спектральным анализом обнаруживаются соединения, которые можно идентифицировать как фенолы и ароматические спирты. [c.85]

    Расчеты молекулярных характеристик в методе МОХ. В методе МОХ устанавливают корреляции (соответствия) между характеристиками МО и свойствами молекул. Аналогично тому как это сделано для бензола, рассчитывают порядок связи и по корреляционному графику (см. рис. 48) определяют ее длину. Метод МОХ используется и для расчета энергии делокализации. Для бензола Ео = 2р (см. с. 117). Сравнив энергию реакции гидрирования бензола gHe (—209 кДж/моль) и трех молекул циклогексена gHio (—120 кДж/моль), находим Ео =2 =—151 кДж/моль. Полученная величина является не истинным, а эффективным значением р. Эту величину можно использовать, в свою очередь, для расчета энергии делокализации в производных бензола (табл. 11). Установлены корреляции между энергиями орбиталей по методу МОХ и спектрами. (Здесь эффективный параметр р имеет уже другое значение.) Они предсказывают в соответствии с опытом смещение полос в сторону низких частот для ряда бензолтрифенилен-> коронен. [c.119]

    Глобула химотрипсина содержит лишь один комплексующий центр, способный быстро и обратимо сорбировать углеводородные молекулы, — это активный центр фермента [73]. Гипотеза о существовании гидрофобной области в активном центре химотрипсина была выдвинута в начале 60-х годов на основании исследования ингибирующих свойств большого числа производных бензола, нафталина и других ароматических соединений [74—76]. Эта гипотеза находит подтверждение в том, что связывание с активным центром некоторых конкурентных ингибиторов, содержащих хромофорные группы, приводит к сдвигу их спектра в длиннойолновую область [77—79]. Анализируя величину спектрального сдвига, Кэллос и Эвейтис [80] пришли к выводу, что активный центр фермента по величине диэлектрической постоян- [c.138]

    Расшифруйте спектр ПМР (рис. 4.51) и установите строение производного бензола С11Н14. [c.109]

    Соединения, относящиеся к первой группе (известны [10]-, [14]-, [18]-, [22]-, [ 50]-аннулены), стабильны. Для них характерно сильное дезэкранирование внешних протонов в результате парамагнитных кольцевых токов, тогда как внутренние протоны, наоборот, сильно экранированы и находятся в спектре в области высоких полей. Именно такими свойствами обладают производные бензола и конденсированных ароматических углеводородов. 4п-Аннулены менее устойчивы и характеризуются прямо противоположными эффектами в спектрах ЯМР (известны [12]-, [16]-, [20]-, [24]-анну.пены). Хотя по пр<хггранственыым условиям только для [30]-аннулена достижима ненапряженная плоская конфигурация, уже для [18]-ан-нулеиа реализуется структура, близкая к плоской, что объясняется стремлением к ароматической стабилизации. [c.267]

    Согласно спектроскопическим данным, 186 остается ароматичным, так как драматических изменений в его ЯМР-, УФ- или ИК-спектрах в сравнении с обычньпли ароматическими соединениями не наблюдается. В то же время его реакционная способность имеет мало общего со свойствами обьрг-ных производных бензола и напоминает скорее поведение 1,3-диенов. Так, например, бромирование 186 количественно дает продукт присоединения — [c.450]

    Более поздние исследования инфракрасных спектров некоторых производных фурана, в частности, полиеновых альдегидов и азинов (198), позволили авторам констатировать, что фурановый цикл в этих соединениях обнаруживает наличие двойных связей и что взнос фурильной группы... эквивалентен приблизительно одной двойной связи . Было отмечено при этом, что инфракрасный спектр фурил полиеновых альдегидов был очень подобен их алифатическим аналогам и характеризовался той же самой системой полос. Следует, в связи с этим, отметить, что в колебательном спектре бензол не обнаруживает характерных частот колебаний ординарных и двойных связей алифатических соединений (199). [c.25]

    Кольцевой ток. Движение я-электронов по замкнутому контуру. Кольцевой ток генерирует магнитное поле, которое может влиять па резоианспую частоту электронов. Обычно кольцевой ток сдвигает сигналы протонов ароматических соединений (например, производных бензола) в область слабого ноля (на спектре влево) от того места, где они должны были бы находиться ири отсутствии кольцевого тока (рис. 15-5 и 15-5). Наличие кольцевого тока — признак ароматичности соединения. [c.586]


Смотреть страницы где упоминается термин Бензол производные, спектры ЯМР: [c.78]    [c.23]    [c.78]    [c.496]    [c.8]    [c.8]    [c.23]    [c.31]    [c.143]    [c.34]    [c.30]    [c.15]    [c.595]    [c.119]    [c.201]    [c.16]    [c.611]    [c.636]    [c.639]   
Спектроскопия органических веществ (1992) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

ССВ в бензоле производных бензола



© 2025 chem21.info Реклама на сайте