Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

группы в присутствии S ионов

    Если исследуемый раствор содержит сульфид-ноны, их следует сначала отделить от остальных ионов этой группы. Присутствие ионов. S может при дальнейшем ходе анализа привести к ошибочным выводам вследствие сходства некоторых реакций этого иона с реакциями ионов SOi) и S2O.3. Так  [c.176]

    Вторым важным и очевидным требованием для первой группы методов является отсутствие других компонентов, которые дают в этих же условиях продукт реакции, обладающий аналогичными физическими свойствами. Так, наиример, в присутствии ионов железа наряду с гидроокисью алюминия будет осаждаться также гидроокись железа. По весу полученного после прокаливания вещества нельзя непосредственно вычислить содержание алюминия. Наоборот, присутствие веществ, хотя и реагирующих сданным реактивом, но не дающих аналогичных по физическим свойствам продуктов, не мешает выполнению определения (отличие от второй группы методов, см. стр. 24). Так, например, в растворе соли алюминия может присутствовать соляная кислота хотя она реагирует с гидроокисью аммония, но получающийся продукт реакции растворим и поэтому (при введении достаточного избытка реактива) не мешает определению. [c.23]


    Не останавливаясь на составе ионообменников, следует указать, что ныне их применение открывает чрезвычайно большие возможности для извлечения ценных металлов из слабоконцентрированных растворов, промывных вод, разделения металлов, присутствующих в растворе, а также очистки растворов солей от примесей. Известно, например, что некоторые из группы редкоземельных металлов можно совершенно освободить от их соседей по группе посредством ионного обмена 2. Посредством ионного [c.578]

    То обстоятельство, что ионы металлических элементов образуют соли с весьма различной растворимостью, обладают разными кислотно-основными свойствами и способностью к комплексообразованию, позволяет проводить их разделение и устанавливать присутствие ионов различных металлов в их смесях. Качественный анализ представляет собой определение наличия или отсутствия иона металла в смеси ионов металлов в растворе. Такой анализ обычно проводят путем разделения ионов на группы с помощью реакций осаждения и последующего анализа на ионы индивидуальных металлов в пределах каждой группы. [c.137]

    При действии азида натрия и пероксида водорода в присутствии ионов железа (И) к двойным связям можно присоединить две азидные группы [609]  [c.232]

    Выбор метода определения обменной емкости в статических или в динамических условиях зависит от природы ионита, условий опыта (pH, состав раствора и др.). Наиболее полную качественную характеристику ионогенных групп, присутствующих в ионите, дает метод потенциометрического титрования в статических условиях определения обменной емкости [44]. Для сильнокислотных и сильноосновных ионитов рабочая емкость практически всегда совпадает с полной обменной емкостью, равной количеству функциональных групп в единице массы или объема смолы. Величина же рабочей емкости слабокислотных или слабоосновных ионитов в очень.значительной степени определяется концентрацией ионов водорода и других ионов (противоионов) в растворз[37]. [c.75]

    Для определения обменной емкости применяют иониты в водородной и гидроксильной формах. Наиболее полную качественную характеристику ионогенных групп, присутствующих в ионите, дает метод потенциометрического титрования. [c.155]

    Промышленное применение находят также процессы электрохимического окисления альдегидов и спиртов. В частности электролизом глюкозы получают глюконат кальция. Поскольку при этом может окисляться не только альдегидная группа, а и спиртовые группы у остальных пяти атомов углерода, электролиз ведут в очень мягких условиях, в присутствии иона брома в качестве катализатора, являющегося как бы переносчиком кислорода , при непременном удалении глюконовой кислоты из сферы реакции в виде труднорастворимой соли — глюконата кальция  [c.455]


    Обнаружение анионов всегда надо начинать с изучения действия группового реагента. Только убедившись в том, что анионы данной группы присутствуют, следует приступить к обнаружению каждого иона этой группы. [c.302]

    IV группы и ионы V группы. Если осадок не выпадает от прибавления раствора соляной кислоты (см. п. 2, а), то тот же солянокислый раствор нагревают на водяной бане и пропускают в него сероводород. Желтый или коричневый осадок указывает на присутствие ионов V группы (из ионов [c.305]

    III аналитической группы. Сульфиды и гидроокиси катионов III группы осаждают раствором (NH4)2S. Полученный осадок отделяют и анализируют (см. гл. IV, 33, стр. 275). В результате анализа устанавливают присутствие ионов никеля. [c.449]

    Между гидратированной молекулой НПАВ и ее ионизированной формой в растворе существует равновесие. В пластовых условиях, где присутствуют ионы Са , М , равновесие сдвигается за счет связывания ОН-групп с образованием соответствующих нерастворимых гидроокисей [128]. Атом водорода в положительном ионе оказывается связанным ковалентной связью с атомом кислорода. При этом разрыв связи С — О значительно облегчается. Это один из возможных механизмов разрушения НПАВ под действием компонентов пластовой воды. [c.116]

    Интересным примером участия соседней группы является гидролиз аниона (8)-2-бромпропионовой кислоты в присутствии иона серебра. Общий результат показан ниже  [c.203]

    Стадия В. В присутствии иона серебра, который служит катализатором, диазокетон разлагается до карбена или другого эквивалентного соединения ари этом выделяется молекулярный азот. Группа К мигрирует к электрофильному атому углерода, в результате чего образуется кетен, который тут же реагирует с водой, давая новую кислоту. [c.112]

    Более типичным для биологич. Ф. является случай, когда в активных центрах ферментов, участвующих в переносе фосфорильной группы, присутствуют ионы металлов. Показано, что в зависимости от природы металла могут быть образованы различные комплексы АТФ с ионами металлов. Так, ионы Mg, Са и Ха предпочтительно образуют хелатные соединения с фос-фатнь1ми группами в р- и у-положениях АТФ, Си " взаимодействуют с а- и р-фосфатными группами, а Ми , по-видимому, может взаимодействовать со всеми тремя группами. Наиболее эффективными катализаторами ферментативных реакций, как правило, являются ионы Си, Хп, Мн и Са для этих элементов, ио-видимому, общим можно считать наличие вакантных атомных орбит, на к-рые могут внедряться неподе-ленные пары электронов атома кислорода фосфорильной группы. Отмечена следующая закономерность в изменении стабильности металл-хелатных комплексов с АТФ Мд>Са>8г>Ва. Снижение свободной энергии активации на стадии, определяющей скорость реакции, в чем, по существу, и состоит смысл катализа, реализуется двумя путями а) размазыванием  [c.254]

    Отравление ионами металлов свойственно платиновым, палладиевым и другим катализаторам из металлов VIII группы и благородных металлов других групп. Было обнаружено, что каталитическая активность платиновых и палладиевых катализаторов гидрирования понижается в присутствии ионов ртути, свинца, висмута, олова, кадмия, меди, железа и других. Сравнение токсичности ионов различных металлов по отношению к платиновым катализаторам гидрирования приводит к заключению, что токсичность свойственна, по-видимому, тем металлам, у которых все пять орбит d-оболочки, непосредственно следующих за s- и р-валептными орбитами, заняты электронными парами или по крайней мере одиночными -электронами. По мнению Мэкстеда, отсюда вытекает, что отравление платины и подобных ей катализаторов ионами металлов включает, вероятие, образование адсорбционных комплексов, которые можно рассматривать как интерметаллические соединения с участием d-электронов в образовании интерметаллических связей. [c.54]

    Алкил- и арилгпдроперекиси с органическими соединения.мп, содержащими активные водороды, в присутствии небольших количеств (0,2%). медных, кобальтовых и марганцовых солей эги-ленгликолевой и других кислот замещают такие водороды на перекисную группу по ионному механизму [427] и образуют перекиси. Таким способом получены перекись а-кумплтрет.бутила и а-кумилпероксициклогексен с выходом 90%. [c.308]

    Полное описание теории дано Вервеем п Овербеком (1948). Предполагается, что двойной слой возникает благодаря равновесию между ионами в растворе и ионами на поверхности частиц. Хотя система является электрически нейтральной, катионы и анионы пе одинаково распределяются между межфазной поверхностью и раствором, В дополнение к ионам, возникающим из растворителя (Н+ и ОН"), в растворе могут быть ионы эмульгатора (например, Н+ из карбоксильной кислотной группы) и ионы, полученные в результате диссоциации растворенных электролитов. Природа поверхностного заряда будет зависеть от адсорбции и концентрации присутствующих ионов. Обычно преобладает один вид ионов, который становится нотенциалопределяющим ионом для системы, в то время как другие присутствующие электролиты не оказывают особого влияния на поверхность и могут считаться индифферентными. [c.96]


    Осаждение гидратов оксидов молибдена и вольфрама протекает по сложному (еще не полностью изученному) механизму через промежуточные стадии образования полианионов. Конденсация молибдат- и вольфрамат-анионов при добавлении кислоты идет путем связывания через ОН-группы и при отщеплении молекул Н2О (разд. 36.11, опыт 11 и разд. 36.12, опыт 7). В растворах молибдатов уже при добавлении небольших количеств кислоты образуются полимерные ионы. В этой системе доказано, например, присутствие ионов [Мо7024]  [c.620]

    Студент, торопившийся закончить свою лабораторную работу, решил, что неизвестный раствор, качественный анализ которого он проводил, содержит ион металла из группы нерастворимых карбонатов (группа 4 по классификации разд. 16.6), Поэтому, минуя предварительные пробы на ионы металлов из групп 1-3, он сразу же обработал свой раствор 1 а2СОз. Из раствора выпал осадок, и поэтому студент сделал вывод, что в нем присутствовал ион металла из четвертой группы. Почему такое заключение может быть ошибочным Указание. [c.140]

    Фториды калия и натрия растворимы в воде, поэтому реакция образовании мпл0раств0рим010 LIF можеп быть использована для обнаружения ионов Li+ в присутствии ионов Na+ и К . Из катионов I аналитической группы реакции обнаружения ионов Li " мешают линИ) ионы Mg , образуюн.ии> с фторид-ионами малорастворимый MgI-2 (ПР = 6,5 10 "). [c.243]

    Дробное поверочное обнаружение ионов кальция. К 1 мл раствора, содержащего катионы второй и других аналитических групп, прибавляют 2—3 капли насыщенного раствора (N( 4)2804. В присутствии ионов Sr " и Ba образуется белый осадок малорастворимых сульфатов, который рекомендуется выдержать некоторое время на ВОДЯНОЙ бане. Осадок отделяют центрифугированием, после чего наносят каплю прозрачного центрифугата на предметное стекло и выпаривают ее под лампой так же, как в предыдущем определении. При наличии в растворе ионов кальция в поле зрения микроскопа наблюдаются кристаллы aS04-2H20. [c.255]

    Выполнение реакции. 1—2 капли исследуемого раствора помещают на фильтровальную бумагу, смачивают 2 каплями 2 н. раствора едкого натра, прибавляют 2 капли раствора гексацианоферрата (И) калия и затем уксусной кислоты. В случае присутствия ионов А1 " появляется красное окрашивание, окаймляющее пятно, гголученмое от нерастворимых гексацианоферратов (И) катионов других групп. [c.49]

    Имеется много веществ, в молекулах которых одновременно присутствуют ионная и ковалентная связи, например, азотнокислый аммоний NH4NO3 и уксуснокислый кальций Са(СНзСОО)а. Атомы в отдельных группах в этих молекулах (NH +, NO3, СН3СОО ) связаны между собой ковалентной связью и по своему строению и спектрам подобны нейтральным ковалентным молекулам. [c.286]

    При обработке диазониевых солей нитритом натрия в присутствии иона меди(1) с хорошим выходом образуются иитро-соединепия реакция идет только в нейтральной или щелочной среде. Эта реакция была открыта Зандмейером, как и реакции 14-24 и 14-27, но в отличие от последних реакцию 14-25 обычно не называют реакцией Зандмейера. Для предотвращения конкурентной реакции с хлорид-иоиом в реакции часто используется анион BF4 . Механизм ее, по-видимому, аналогичен механизму реакции 14-24 [313]. При наличии в субстрате электроноакцепторных групп катализатор не требуется и под действием одного МаЫОг с высоким выходом образуются ароматические нитросоединения [314]. [c.104]

    Превращение ортофосфата в пирофосфат в отсутствие ферментов под действием АТФ требует обязательного присутствия ионов двухвалентных металлов (марганца, кадмия, кальция, по Левенштейну). Иногда положительно заряженные группы в белках могут заменять металлические ионы в аналогичных реакциях. [c.365]

    Анализ анионов 5-й аналитической группы. Обнаружение ацетат-иона. 10 капель первоначального раствора выпаривают на водяной бане досуха. Прибавляют 5 капель этилового спирта и 5 капель концентрированной H2SO4. Перемешивают стеклянной палочкой. Если ощущается характерный запах уксусноэтилового эфира, то присутствует ион СО2СН7. [c.266]

    Открытие и отделение Ва -ионов. Ва -ионы откройте в отдельной пробе раствора 2 по образованию на фарфоровой пластинке желтого кристаллического осадка Ba rOi, получаемого при действии КгСгдО, + Hg OONa на испытуемый раствор (см 22, стр. 172) В случае присутствия ионов бария для их отделения от остальных катионов 11 группы используйте оставшуюся часть раствора 2. [c.188]

    И некоторые другие. К получению [Ag(NH3)2l+ прибегают для отделения Ag+-HOHOB от РЬ " - и [Hgal+ -HOHOs [ u(NHg)4l+ отличается интенсивным синим цветом и поэтому образование этого комплекса используют для открытия Си+ + -ионов [ u( N)4l получают при открытии ионов кадмия в присутствии ионов меди комплекс [ u( N)4)" более устойчив, чем [ d( N)4j" и не разлагается сероводородом, в то время как [ d( N)4l" при действии сероводорода разлагается с образованием осадка dS и т. д. Образование и применение соответствующих комплексов рассматривается при описании реакций индивидуальных ионов IV аналитической группы. [c.294]

    Влияние заместителе й тако( же, как и при обычном электрофиль-ном замещении. Выходы очень высоки, кроме тех случаев, когда в бензольном кольце присутствуют дезактивирующие группы, препятствующие направляющему влиянию гидроксильной группы (л-хлорфе-нол, / -нитрофенол). Поскольку нитрозонафтолы устойчивы в форме хиноноксимов, они получаются с хорошим выходом и не реагируют дальше с образованием солей диазония. л-Крезол превращается в соль диазония с 77%-ным выходом, однако в присутствии ионов меди, связывающих промежуточное нитрозосоединение в виде хелата, соли диазония не образуются. Мезитилен может быть превращен в соответствующую соль диазония взаимо/.ействием с азотистой кислотой в растворе концентрированной серно кислоты по-видимому, в данном случае реагентом является ион нитрозония +N0. Соединения, дезактивированные наличием в них нитрогруппы, например л-нитроанизол, легко реагируют с азотистой кислотой в концентрированной серной кислоте в присутствии следов ионов ртути, влияние которых, по-видимому, связано с первоначальным меркурированием. В сернокислом растворе, окрашенном в темный красно-ксричневый цвет, соль диазония отсутствует она образуется только после того, как реакционную смесь выливают в воду. При выливании реакционного раствора в сульфаминовую кислоту получается исходный п-нитроанизол с выходом 88%. [c.258]

    Кислоту можно определить как водородсодержащее вещество, диссоциирующее при растворении в воде с образованием ионов водорода, а основание —как вещество, содержащее ион гидроксила или гидроксильную группу, которая при диссоциации данного вещества в водном растворе образует ион гидроксила. Кислотные растворы обладают характерным острым вкусом, обусловленным присутствием ионов гидроксония Н3О+, тогда как растворы оснований имеют характерный солоноватый вкус, связанный с присутствием в них ионов гидроксила ОН . Обычные неорганические кислоты (соляная, азотная и серная кислоты) полностью ионизованы (диссоциированы) в растворе при этом они дают один ион водорода на каждый кислотный атом водорода в формуле данной кислоты, тогда как другие кислоты, например уксусная, дают значительно меньше ионов водорода. Кислоты, подобные уксусной, называют слабыми кислотами. Молярный раствор уксусной кислоты не обладает столь же острым вкусом и не реагирует столь энергично с активными металлами (например, с цинком), как реагирует молярный раствор соляной кислоты это объясняется тем, что 1 М раствор уксусной кислоты содержит много недиссоциированных молекул НС2Н3О2 и только относительно небольшое число ионов Н3О+ и С2Н3О2. В растворе уксусной кислоты соблюдается устойчивое равновесие, описываемое уравнением [c.331]

    Иная ситуация имеет место при проведении эксклюзионной хроматографии в водных средах. Из-за специфических особенностей многих разделяемых систем (белки, ферменты, полиэлектролиты и др.) и разнообразия применяемых сорбентов существует очень много вариаций состава подвижной фазы для подавления различных нежелательных эффектов [34, 35]. Общими приемами модификации является добавка различных солей и применение буферных растворов с определенным значением pH. В частности, поддержание рН=<4 дает возможность подавить слабую ионообменную активность силикагелей, обусловленную присутствием на их поверхности кислых силанольных групп. Требуемая ионная сила подвижной фазы достигается при концентрации буферного раствора 0,05-0,6 М оптимальную концентрацию подбирают экспериментально. Для предотвращения ионообменной сорбции катионных соединений наиболее часто используют такой активный модификатор, как тетраметиламмонийфосфат при рН=3. Однако при разделении некоторых белков могут проявляться гидрофобные взаимодействия, в свою очередь осложняющие эксклюзионный механизм разделения. Те же эффекты иногда проявляются и при работе с дезактивированными гидрофильными сорбентами. Для их устранения к растворителю добавляют метанол. Иногда в водную подвижную фазу вводят полярные органические растворители, полигликоли, кислоты, основания и поверхностно-активные вещества. [c.48]

    В результате реакции с углекислым газом ацетил-КоА превращается в организме в малонил-КоА — тиомалоновый эфир кофермента А. (Это превращение не сводится к простой прямой реакции между ацетил-КоА и углекислым газом и нуждается в присутствии биотина, витамина группы В, иона и фермента, называемого карбоксилазой.) Получив аце-тил-КоА и малонил-КоА, мы можем теперь перейти к следующим стадиям  [c.137]


Смотреть страницы где упоминается термин группы в присутствии S ионов: [c.327]    [c.172]    [c.69]    [c.229]    [c.89]    [c.311]    [c.290]    [c.306]    [c.322]    [c.171]    [c.165]    [c.472]    [c.134]    [c.85]    [c.181]   
Курс аналитической химии Книга 1 1964 (1964) -- [ c.395 ]




ПОИСК







© 2025 chem21.info Реклама на сайте