Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфиды сталях

    Этот метод применяют для анализа природных сульфидов, сталей и т. п. [c.995]

    Химия перестала быть мешаниной названий времен алхимии (см, гл. 2), когда каждый химик, используя собственную систему, мог поставить в тупик коллег. Была разработана система, основанная на логических принципах. По названиям соединений, предложенных этой номенклатурой, можно было определить те элементы, из которых оно состоит. Например, оксид кальция состоит из кальция и кислорода, хлорид натрия — из натрия и хлора, сульфид водорода — из водорода и серы и т. д. Четкая система приставок и суффиксов была разработана таким образом, что стало возможным судить о соотношении входящих в состав веществ элементов. Так, углекислый газ (диоксид углерода) богаче кислородом, чем угарный газ (монооксид углерода). В то же время хлорат калия содержит больше кислорода, чем хлорит калия, в перхлорате калия содержание кислорода еще выше, тогда как хлорид калия совсем не содержит кислорода. [c.50]


    Некоторые металлы и сплавы подвергаются значительному разрушению под действием растворов кислот и щелочей, применяемых при очистке газа. Щелочи низкой и средней концентрации не вызывают коррозии обыкновенной стали. При повышении концентрации щелочи начинается выщелачивание с поверхности металла сульфидов, силикатов и окислов. Это явление приводит к снижению механической прочности и жаростойкости металлов. На детали, находящиеся под повышенными механическими нагрузками, например вращающиеся части центробежных насосов, коррозионное действие щелочей усиливается. [c.32]

    В последнее время докторскую очистку стали комбинировать с очисткой сульфидом свинца, основанной на косвенном окислении последнего кислородом воздуха. Ниже излагается сущность процесса. [c.244]

    Коррозионный процесс разрушения стали при высоких температурах замедляется, так как образуются стойкие поверхностные пленки. Наружный слой пленок, состоящий из Ре5 и РеЗг, не содержит хрома, имеет рыхлое строение и способен отслаиваться. Внутренний же слой, обладая повышенной адгезионной способностью, соединен с основным металлом, имеет шпинельную структуру, состоит из смешанных сульфидов хрома и железа и часто содержит больше хрома, чем основной металл. Такой слой надежно защищает металл от коррозии, интенсивность которой обратно пропорциональна толщине пленки и особенно велика в начальный период эксплуатации труб. Затем скорость коррозии уменьшается. Прочность и плотность пленок на металле зависит от цикличности процессов. Теплосмены — нагревы и охлаждения — приводят к разрыхлению и отслаиванию пленок под влиянием термических напряжений, что прежде всего заметно при частых процессах регенерации, проводимых на установках. [c.149]

    Постоянное разрушение защитных оксидных пленок металла усиливает окисление, а присутствие в газовой среде сернистых соединений способствует образованию сульфидов. Кроме того, при контакте сталей и сплавов с золой, содержащей сульфаты щелочных металлов, происходят окислительно-восстановительные реакции, которые также приводят к образованию сульфидов  [c.176]

    Сульфат натрия взаимодействует избирательно с элементами, имеющими высокую энергию образования оксидов, т. е. для хромоникелевых сталей и сплавов этот процесс идет с преимущественным окислением хрома, постепенным накоплением сульфидов никеля и образованием эвтектики N1—N 382, расплав которой наступает при 620—645 °С и вызывает катастрофическую сульфидную коррозию. [c.176]


    Микроорганизмы, находящиеся в большом количестве в почвах и грунтах, могут вызывать значительное местное ускорение коррозии металлов, в частности стали (рис. 278). Наибольшую опасность представляют анаэробные сульфат-редуцирующие бактерии, которые развиваются в илистых, глинистых и болотных грунтах, где возникают анаэробные условия. Зти бактерии в процессе жизнедеятельности восстанавливают содержащиеся в грунте сульфаты, потребляя образующийся при катодном процессе водород, до сульфид-ионов с выделением кислорода  [c.388]

    Резина обладает хорошей адгезией к стали, чугуну, олову, цинку и хрому. При гуммировании свинца и алюминия ускоряется процесс старения резины. Медь непригодна для гуммирования, вследствие того что образующийся на поверхности металла порошкообразный сульфид не пристает ни к меди, ни к резине, и, кроме того, действует на резину разрушающе. Поэтому перед покрытием резиной на поверхность меди наносят слой полуды. При гуммировании чугуна получаются менее прочные покрытия, чем нри обкладке резиной листовой стали. Стальное литье часто имеет пористую поверхность, и поэтому его не рекомендуется гуммировать. [c.443]

    Исследовано влияние добавок сульфида молибдена на смазочные свойства некоторых пластмасс [120]. Так, добавление 6— 10 % сульфида молибдена значительно снижает коэффициент трения полиамидной пленки по стали и ее износ. [c.126]

    Сера содержится в значительной части добываемых нефтей. Ее количество в нефти определяется конкретным месторождением и может изменяться в пределах от нуля до 5—7%. Основная часть серы обычно связана с асфальто-смолистыми компонентами нефти. Кроме того, она может быть в нефти в виде коллоидной серы, сероводорода, меркаптанов, алифатических, нафтеновых и ароматических сульфидов и т. д. В настоящее время в нефтях насчитывается около 90 серосодержащих веществ. Доля сернистых нефтей в мировой добыче нефти постоянно возрастает. Так, если до 1960 г. нефти, содержащие более 1% серы, составляли 37%, то к 1975 г. их стало 45%. [c.10]

    В металлургии стали наиболее важную роль играет моносульфид железа (АН = —100,4 кДж/моль), который образуется в сплавах из других сульфидов при избытке л<елеза, например  [c.304]

    Нефтяные сульфиды в концентрации 0,1% повышают противоизносные свойства топлива гидроочистки (см. рис. 40. в). В больших и меньших концентрациях сульфиды и сульфоксиды увеличивают износ стали дисуль- [c.164]

    Так как коррозия развивается вследствие преимущественной диффузии ионов железа через поверхностную пленку к газообразной среде, то наружный слой этой пленки обогащен серой и состоит из РеЗг. При повышении температуры РеЗг начинает распадаться с выделением элементной серы и образованием более термостабильного сульфида. Высокотемпературная коррозия под действием сероводорода в процессе гидроочистки наиболее опасна в интервале 350—450 °С, особенно если она сопровождается обезуглероживанием карбидных соединений. Последнее приводит к меж-кристаллитному разрушению металла — так называемой межкри-сталлитной коррозии. Чтобы ее предотвратить, достаточно легировать сталь 17% хрома. При температурах ниже 260 °С газообразные смеси с любым содержанием сероводорода малоагрессивны. [c.253]

    На начальной сталии сульфат кальция восстанавливают в сульфид [c.107]

    Увеличение водородного перенапряжения обычно приводит к уменьшению скорости коррозии стали в кислотах, но присутствие в стали серы или фосфора увеличивает скорость ее коррозии. Возможно, это происходит из-за низкого водородного перенапряжения на сульфидах или фосфидах железа, существующих в стали или образовавшихся на поверхности в результате реакции железа с НаЗ или соединениями фосфора в растворе. Возможно также [7], что эти соединения инициируют реакцию анодного растворения железа Ре -> Ре+ - - 2ё (понижая активационную поляризацию) или изменяют соотношение площадей анодов и катодов. Решение этого вопроса требует дальнейших исследований. [c.58]

    В последнее время возникла тенденция покрывать сталь более экономичным комбинированным покрытием, состоящим из нижнего хромового слоя (0,008—0,01 мкм), находящегося на нем слоя оксида хрома и наружного органического покрытия. Таким образом в США защищают 16 % всей жести, выпускаемой для консервной тары [18]. Система обеспечивает следующие преимущества лучшую сохранность продуктов, стойкость к воздействию сульфидов, хорошую адгезию и отсутствие подтравливания наружного органического покрытия, стойкость наружной поверхности тары к нитевидной коррозии. Однако это покрытие трудно поддается пайке, что ограничивает его использование для консервных банок. [c.241]

    Фотоокисление, сульфидов стало изучаться лишь недавно. Образование бензальдегида из алкилбензилсульфида может быть, по-видимому, объяснено первоначальным образованием 5-диоксида (уравнение 40) [82]. [c.182]

    Расход едкого натра составляет 12,5 г NaOH на 100 мл раствора. Очищаемый дистиллят перемешивается с докторским раствором в присутствии небольшого количества элементарной серы. При этом образуется черный осадок сульфида свинца. Неприятный занах бензина нри очистке исчезает, и он становится нейтральным [85, 99, 100]. Хотя о том, что индивидуальные меркаптаны в щелочной среде окисляются серой при комнатной температуре, было известно уже давно [102], прошло много лет, пока механизм докторской очистки стал окончательно ясен [47, 103]. [c.240]


    Не полностью используемый бактериями на окислительные процессы кислород обеспечивает протекание катодной деполяризационной реакции грунтовой коррозии стали в анаэробных условиях. Сероводород уменьшает перенапряжение водорода в кислых и слабокислых грунтах, облегчая протекание катодного процесса в этих условиях. Сульфид-ионы, действуя как депассиваторы, а также связывая железо в труднорастворимые и малозащитные сульфиды, растормаживают анодный процесс коррозии стали. По данным некоторых исследователей, скорость коррозионного разрушения стали при воздействии этих бактерий может возрастать в 20 раз. [c.388]

    Из общего количества серы, содержащейся (В нефтях, 10—20% составляют сульфиды, сотые доли процента — меркаптаны, элементная сера в нефтях обычно отсутствует в основном это сложные сероорганические соединени-я, исследовать которые стало возможно только после появления спектральных методов анализа. Распределение серы по различным фракциям одной и той же нефти во многом зависит от характера ее производных и условий перегонки. Обычно содержание общей серы увеличивается от низших фракций к высшим. В качестве примера можно привести распределение общей серы по фракциям введенской нефти в сырой нефти— 1,86%, во фракции до 200 °С — 0,26%, во фракции 200—300 °С—1,33%, во фракции 300—350 С—1,84%, а в основных масляных фракциях (350—450°С)—2,577о и более [1, с. 50]. Аналогичные данные получены и при разгонке нефтей на более узкие фракции [26]. [c.22]

    Применение. Наибольшее значение из элементов подгруппы VI1Б имеет марганец. В больших количествах его применяют в качестве добавки к стали, улучшающей ее свойства. Поскольку марганец обладает большим сродством к сере, чем железо (для MnS AGf = — 218. кДж/моль, а для FeS AGf = —101 кДж/моль), при Добавке ферромарганца к расплавленной стали растворенная в ней сера связывается в сульфид MnS, который не растворяется в металле и уходит в шлак. Тем самым предотвращается образование при затвердевании стали прослоек между кристаллами из сульфида железа, которые значительно понижают прочность стали, делают ее ломкой, особенно при повышенных температурах. Непрореагировавший с серой марганец остается в стали, что еще более улучшает ее свойства. Кроме серы, марганец связывает растворенный в стали кислород, присутствие которого также нежелательно. [c.550]

    В результате в печи образуются два жидких слоя — сверху более легкий шлак, а внизу — расплав, состоящий из FeS и U2S (штейн). Шлак сливают, а жидкий штейн переливают в конвертор, в- который добавляют флюс и вдувают воздух. Конвертор для выплавки меди аналогичен используемому для получения стали, только воздух в него подается сбоку (при подаче воздуха снизу медь сильно охлаждается и затвердевает). В конверторе образуется расплавленная медь, сульфид железа превращается в оксид, который переходит в шлак  [c.582]

    Выбор жаростойкого силава обусловливается также характером и состя вом газовой среды. Так, хромистые и хромонпке-левые стали обладают хорошей стойкостью в окислительных средах, восстановительная же газовая среда действует на лих неблагоприятно. Особенно неблагоприятно влияют при высокнх температурах на стали, содержащие никель, сернистые соединения пнкел образует с серой сульфид, дающий с металлическим никелем эвтектику, обладающую низкой температурой плавления, В условиях действия сернистых соединений при высоких температурах, как было указано, пригодны стали, легированные алюминием, хромом и кремнием. [c.238]

    Виноградов с сотрудниками [153], исследуя действие трибутилтритиофосфита на сталь и красную медь с помощью радиоактивных индикаторов, установили, что при не очень тяжелых режимах трения (в отсутствие заедания и резких подъемов температур) защитное действие на сталь обусловлено преимущественным влиянием фосфора, причем фосфор в органических фосфитах отличается значительно более высокой реакционной способностью по отношению к стали, чем фосфор, связанный с сульфидной и ди-сульфидной серой. Вследствие этого на стали сначала образуется пленка фосфида железа и лишь при очень высокой температуре начинает появляться пленка сульфида железа. При опытах, проводимых на медных и стальных дисках, было выявлено, что свя- [c.138]

    Сульфиды. Из соединений железа с серой известны моносульфиды РеЗ, сесквисульфид РегЗз, дисульфид (персульфид) РсЗг, а также более сложные по составу, встречающиеся в природе в виде минералов. Присутствие сульфидов железа в сталях и других сплавах резко снижает их механические свойства. Поэтому устранения примесей серы из стали является одной из важных задач металлургии. Содержание серы в сталях жестко лимитируется соответствующими стандартами. [c.304]

    Факторы, влияющие на точечную коррозию. Природа металла. Отдельные металлы и сплавы в разной степени проявляют склонность к точечной коррозии. Более других подвержены точечной коррозии пассивные металлы и сплавы. В растворах хлоридов наибольшую стойкость обнаруживают тантал, титан, хром, цирконий и их сплавы весьма склонны к питтингообра--зованпю в этой среде высоколегированные хромистые и хромоникелевые сплавы. Склонность к точечной коррозии ие всегда одинакова, она зависит от химического состава стали. Чем выше в стали содержание хрома, никеля и молибдена и чем меньше углерода, тем больше ее сопротивляемость точечной коррозии. Коррозионностойкие стали тем меньше подвержены пит-тингу, чем однороднее их структура, в которой должны отсутствовать включения карбидов и других вторичных фаз, а также неметаллические фракции, в частности окислы и сульфиды, уменьшающие стабильность пассивного состояния и облегчающие разрушение пассивирующей пленки ионами хлора. Некоторые виды термообработки, приводящие к улучшению однородности стали, благоприятно сказываются на ее сопротивляемости точечной коррозии. [c.443]

    Установлено, что сульфид железа является катодом по отношению к железу и стали и образует с ним гальваническую пару, разность потенциалов в которой может достигать 0,2—0,4 В. Способность сульфидов образовывать макрогальванические пары со сталью приводит к быстрому разрушению нефтегазонромыслового оборудования в результате образования глубоких язв. [c.18]

    Это явление объясняется конденсацией на внешне поверхности насосно-компрессорных труб воды и легкие углеводородов, которые насыщаются из газовой средь НаЗ и СОг. В результате на поверхности углеродисто стали образуется рыхлая пленка сульфида железа. Же лезо в контакте с сульфидом образует электрохимиче скую пару, в которой металл служит анодом и быстр разрушается. Слой про-дуктов коррозии периодическ разрушается, и на его месте появляется новый. В ре зультате на стенках этих труб главным образом окол( соединительных муфт, где накапливается су ьфид же леза, через 4—5 лет появляются сквозные отверстия На внутренних поверхностях труб скопление сульфи да железа затруднено, так как продукты коррози с нефтью выносятся в трубопроводы. [c.132]

    Расчетная дозировка аммиака корректируется в ходе эксплуатации действующей установки по водородному показателю дренажных вод из газосепаратора атмосферной колонны 7-7,5 - для конденсационно-холодильного оборудования из углеродистой стали 6,5-7 - из латуни и нержавеющей стали. В первом случае будет иметь место некоторый перерасход аммиака в результате связывания части сероводорода и загрязнения водных конденсатов сульфидом аммония. Во втором случае сероводород практически не связывается с аммиаком и уходит с га ювым и бензиновым потоками. [c.16]

    Реакции с участием серы и фосфора. Сера и фосфор вносятся в доменную печь с материалами шихты сера в виде органических соединений, сульфидов и дисульфидов железа и других металлов, а также сульфатов с коксом и агломератом, фосфор — в виде тетракальцийфосфата с пустой породой и флюсами. Оба элемента ухудшают качество как чугуна, так и выплавляемой из него стали, поэтому содержание их в металле должно быть ограничено. [c.66]

    Несмотря на то что превращение этилового спирта в диэти-ловый эфир действием концентрированной серной кислоты изучалось уже в 1540 г. [1], получение промежуточной этилсерпой кислоты [2] относится к значительно более поздним годам [3]. До того момента, когда галоидные алкилы и диалкил сульфаты" стали легко доступными соединениями, соли алкилсерных кислот обычно применялись для алкилирования. Для этой цели они используются и в настоящее время в том случае, если реакция легко протекает в водном растворе, например при получении меркаптанов и сульфидов. Значение кислых эфиров как промежуточных продуктов при превращении олефинов в спирты, простые и сложные эфиры и применение щелочных солей различных высокомолекулярных. алкилсерных кислот в цачестве смачивающих веществ и детергентов в последние годы сильно повысили интерес к этому классу соединений. [c.7]

    В период 1935-1940 гг. стало ясно, что используемый катализатор относится к числу бифункциональных, т.е. является катализатором гидрирования и крекинга, и основное назначение гидрирующего компонента сохранить чистоту крекирующего компонента. Одновременно удалось установить, что если сульфид вольфрама неизбежно вьшолняет роль и катализатора гидрирования, и катализатора крекинга, то, используя вольфрам на монтмориллоните, можно разделить эти катализаторы и подобрать для каждого из компонентов оптимальные условия работы. Надлежащая предварительная обработка сьфья с целью удаления ядов позволила опробовать значительное число компонентов катализаторов, и в 1939 г. английская компания Imperial hemi al Industries, Ltd. разработала катализатор -железо на обработанном HF монтмориллоните - для второй стадии двухстадийного процесса гидрокрекинга средних масел. Катализатор оказался достаточно хорошим и использовался в Англии для производства авиационного бензина до конца мировой войны. [c.264]

    Было обнаружено, что в нейтральных растворах хлоридов включения серы в прокатанную сталь действуют как инициаторы питтингообразования [36,37]. С другой стороны, отмечено, что, примесь серы в стали, содержащей более 0,01 % Си, не оказывает существенного влияния на скорость коррозии в кислотах [33, 38]. Измерения скорости проникновения водорода сквозь катодно-поляризованную. листовую сталь, содержащую игольчатые включения (РеМп)8, показывают, что НаЗ, образующийся на поверхности металла в результате растворения включений, стимулирует (промотирует) проникновение водорода в сталь. Скорость проникновения увеличивается с повышением содержания серы в пределах 0,002—0,24 % 8, но только на тех участках, где поступление На8 идет в результате растворения включений [39]. Включе-ння игольчатых сульфидов способствуют водородному охрупчиванию, которое может приводить к быстрому или постепенно развивающемуся растрескиванию, например, стальных трубопроводов [40]. [c.125]

    Типичными эффективными органическими ингибиторами травления для стали являются о- и л-толилтиомочевина, пропил-сульфид, диамиламин, формальдегид, и п-тиокрезол. Другие соединения охарактеризованы в [41а]. [c.271]

    Мартенситные стали, если их подвергнуть термической обработке для повышения твердости, приобретают сильную склонность к растрескиванию в слабо- и умереннокислых растворах. Особенно это проявляется в присутствии сульфидов, соединений мышьяка или продуктов окисления фосфора или селена. Специфические свойства кислот не имеют существенного значения до тех пор, пока процесс идет с выделением водорода. Эта ситуация отличается от случая аустенитных сталей, которые разрушаются исключительно в результате специфического действия анионов. Катодная поляризация также не защищает мартенситные стали от растрескивания, а ускоряет его. Все эти факты свидетельствуют, что мартенситные стали в указанных условиях разрушаются не по механизму КРН, а в результате водородного растрескивания (см. разд. 7.4). При катодной поляризации в морской воде, особенно при высоких плотностях тока, более пластичные ферритные стали подвергаются водородному вспучиванию, а не растрескиванию. Аустенитные нержавеющие стали устойчивы и к водородному вспучиванию, и к водородному растрескиванию. [c.319]

    Ингибиторы коррозии металлов. Сульфиды и сульфо- ксиды являются эффективными ингибиторами коррозии металлов. Хорошо ингибируют коррозию металлов в углеводородных средах алкилциклоалкилсульфиды [52] эффективными ингибиторами коррозии стали в кислых средах оказались этилдодецил-, октилбензил- и дигексил-сульфоксид [53]. [c.60]


Смотреть страницы где упоминается термин Сульфиды сталях: [c.49]    [c.90]    [c.6]    [c.112]    [c.200]    [c.295]    [c.118]    [c.224]    [c.164]    [c.40]    [c.153]    [c.320]   
Аналитическая химия серы (1975) -- [ c.203 ]




ПОИСК







© 2025 chem21.info Реклама на сайте