Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ органических эффективность

    Странным образом этот бурный расцвет органической химии долгое время проходил почти незамеченным химиками, работающими в области органического катализа. Лишь немногие ученые пытались объяснить результаты эксперимента с позиций конформационной теории. Возможно это связано с тем, что конформационный подход сравнительно мало эффективен в случае простых реагирующих молекул, содержащих менее пяти атомов углерода, а также реакций, идущих по ионным механизмам. Однако для каталитических реакций углеводородов, содержащих 5 или более атомов углерода, особенно на металлических катализаторах, конформационный подход становится в определенных пределах тем эффективнее, чем больше молекула. К объяснению многих фактов в этой области часто не видно иного подхода. По-видимому, в таких случаях конформационные эффекты могут определять механизм и направление реакции. [c.14]


    Применение гетерогенного катализа при крекинге нефти, т. е. при получении легких моторных топлив из тяжелых фракций нефти, оказалось весьма эффективным. Гетерогенный катализ используется при получении различных органических соединений из углеводородов нефти, природных и промышленных газов, при гидрогенизации жиров (получение твердого пищевого жира из жидкого растительного масла) и в ряде других производств. [c.500]

    Внутримолекулярный кислотно-основной катализ представляет собой эффективный способ ускорения реакций в органических системах. Однако было бы полезно оценить вклад этого вида катализа в ферментативный катализ. Существует принципиальное различие между ферментативными химическими реакциями и реакциями в растворе. Скорость каталитических реакций в растворе описывается уравнениями второго порядка скорость увеличивается с увеличением концентрации катализатора. Реакции [c.209]

    Ферменты — это сополимеры, состоящие из различных аминокислотных мономеров. Поэтому легко понять, почему использованию синтетических органических полимеров для воздействия на активность низкомолекулярных соединений уделяется в последнее время все большее внимание [168] эти реакции могут служить в качестве моделей для более сложных ферментативных процессов. Хотя полимерные катализаторы значительно менее эффективны, чем ферменты, обнаружено некоторое сходство между природными и синтетическими макромолекулярными системами. В частности, полимер с заряженными группами склонен концентрировать и/или отталкивать находящиеся вблизи него низкомолекулярные ионные реагенты и продукты, и, следовательно, он будет функционировать как ингибитор или ускоритель реакции, протекающей между двумя молекулами. Однако если к такому полимеру присоединить еще и каталитически активные группы, то уже сама молекула полимера, а не его противоионы, будет принимать участие в катализе 169, 170]. [c.294]

    Эти свойства ферментов обусловлен весьма сложным механизмом их действия, многие стороны которого еще до конца не раскрыты. Представления о механизмах ферментативного катализа получили наиболее существенное развитие лишь в последние 10—20 лет. Еще в начале XX в. считали,- что биокатализаторы не принадлежат ни к одному из известных классов органических соединений. Более того, многие ученые полагали, что существует определенная связь между высокой эффективностью биокатализа и открытым в то время явлением радиоактивного излучения [8]. Лишь в 1926 г. Самнер установил, что ферменты представляют собой белки. [c.7]


    Катализ играет огромную роль в промышленности органического синтеза. Процессы получения высокомолекулярных соединений—синтетических каучуков, волокон и пластических масс а также. большинства исходных мономеров для этих процессов являются каталитическими. Важнейшие химические соединения, имеющие промышленное значение,—кислоты, спирты, альдегиды и другие—получаются каталитическими методами. Наиболее эффективные способы переработки нефти также основываются на каталитических процессах. [c.146]

    Адсорбционные методы применяются для глубокой осушки природных газов, воздуха, газовых потоков в каталитических процессах, а также в неорганическом и основном органическом синтезах для получения исходных компонентов необходимой степени чистоты и во многих других производствах. Эффективно использование адсорбции для очистки вентиляционных выбросов от нежелательных примесей или улавливания ценных компонентов. Процесс адсорбции является одной из стадий гетерогенного катализа. [c.296]

    Для ферментативного катализа характерны исключительно высокая эффективность и поразительная специфичность. Ничего таинственного, однако, в ферментах нет, напротив, их действие основано на простых и ясных принципах физической, органической и неорганической химии. Задача настоящей книги состоит в том, чтобы установить взаимосвязь между этими разделами химической науки и энзимологией и выявить общие принципы, которые необходимо усвоить студенту для более глубокого понимания основ быстро развивающегося учения о ферментах. [c.7]

    Для обеспечения эффективного каталитического действия ферменты нуждаются в кофакторах, которые к концу реакции не претерпевают изменений и являются существенным ее элементом [1, 22]. Коферменты—это вещества органической природы, сложной структуры (алифатические и ароматические производные, нуклеотиды, гетероциклы). Они, как правило, непосредственно участвуют в каталитической реа щии как переносчики оп деленных химических группировок. Активаторы—это вещества неорганической природы, например,неорганические ионы, оказывающие активирующее воздействие на ферменты. В соответствии с их функциями в ферментативном катализе коферменты делятся на три основные группы  [c.166]

    Многочисленные примеры катализа стадии инициирования и стадии продолжения цепи ионами металлов переменной валентности были обнаружены при изучении окисления органических веществ. В тех случаях, когда катализаторами инициирования и продолжения цепи служат разные вещества, наблюдается эффект каталитического синергизма — скорость реакции в присутствии двух катализаторов существенно превышает сумму скоростей процессов в присутствии лишь одного катализатора. Природа этого эффекта достаточно очевидна. Катализ продолжения цепи приводит к эффективному увеличению длины цепи у = > > Катализ стадии инициирования увеличивает до Щ . Поскольку скорость цепной реакции определяет произведение И у, каталитическое ускорение обеих стадий приводит к неаддитивности действия двух катализаторов. [c.213]

    Цеолиты типа А. В цеолитах типа А внутренние полости, имеющие приблизительно сферическую форму диаметром 11,4 А(а-ячейки), соединены друг с другом шестью 8-членными окнами. Эффективный диаметр этих окон в цеолитах КА, NaA и СаА составляет соответственно 3, 4 и 5 А. Таким образом, поры цеолита КА недоступны почти для всех органических молекул, а в порах СаА могут диффундировать н-парафины и другие линейные молекулы. При исследовании каталитических превращений на цеолите СаА было обнаружено много примеров молекулярно-ситового катализа. Ни NaA, ни СаА не обладают значительной кислотностью. Из-За низкого соотношения кремния и алюминия Н-форма цеолита А не стабильна и поэтому не нашла широкого применения в качестве катализатора. [c.299]

    Изучение кинетики каталитических реакций дает ценные, хотя неполные и обычно не вполне однозначные указания на механизм катализа. Определенный объем кинетических сведений необходим также для эффективного осуществления любой прикладной каталитической реакции. Для нас важно, что кинетика катализа и связанных с ним процессов органически входит в большую часть каталитических применений газовой хроматографии, причем для полного их использования недостаточно одного лишь удачного математического описания процессов, а требуется установление физико-химического смысла кинетических характеристик и констант, которые получаются при сочетании катализа с хроматографией. [c.63]

    Может возникнуть законный вопрос о преимуществе метода межфазного катализа для синтеза галогенпроизводных, особенно иодидов, когда реакция Финкельштейна иодистого натрия с органическим субстратом в ацетоне является особенно эффективной и дает высокие выходы продуктов. Действительно, в тех случаях, где возможно провести сравнение [17], оказалось, что метод межфазного катализа практически не имеет преимуществ. Однако следует учитывать, что этот метод позволяет проводить такие реакции не только в ацетоне и бутаноне-2, но и в других растворителях и, что еще более важно, вводить в реакцию не только иодиды, но и другие галогениды щелочных металлов. Последнее обстоятельство особенно важно для синтеза фторидов, поскольку в этом случае выбор методов синтеза весьма ограничен. [c.149]


    Стереохимнческие представления играют все большую роль в органической химии, особенно с тех пор как начала развиваться конформационная теория. Однако в области органического гетерогенного катализа стереохи-мические подходы распространялись значительно медленнее. Между тем сочетание привычных каталитических понятий и концепций со стереохимическими представлениями, в первую очередь конформационным анализом, весьма перспективно для понимания тонкого механизма гетерогенно-каталитических реакций. Подтверждением этой точки зрения могут служить отдельные работы, приведенные в ряде обзоров [1—10], где в той или иной мере применен вышеупомянутый подход. Используя этот подход, часть альтернативных механизмов некоторых реакций удалось сразу отбросить, поскольку они не удовлетворяли требованиям стереохимии. Наиболее эффективно стереохимические методы могут быть использованы, и действительно используются вместе с различными экспериментальными приемами. [c.9]

    Однако в некоторых случаях мицеллярный катализ может наблюдаться. Например, аликват 336 (метилтриоктиламмонийхлорид) является очень эффективным липофильным МФ-катализатором (см. ниже). Сам по себе он мицеллы не образует. В водных растворах в отсутствие органических растворителей он суш,ествует в виде масляной суспензии. Однако, если добавить в смесь какой-либо неионный мицеллообразующий агент (например, полиоксиэтиленгликоль), аликват уходит внутрь или на поверхность неионной мицеллы. Образующийся таким способом катализатор оказывается очень эффективным во многих процессах [39]. В воде при очень низких концентрациях (10 —10 М) аликват 336 образует самоассоциаты. И хотя они существенно меньше, чем обычные глобулярные мицеллы, они катализируют нуклеофильный гидролиз и реакции декарбоксилирования 40]. Совершенно ясно, что механизм гидролиза нуждается в дальнейшем тщательном изучении. [c.66]

    В качестве моделей ферментов, как правило, используют синтетические органические молекулы, обладающие характерными особенностями ферментативных систем. Они меньше ферментов по размеру и проще по структуре. Следовательно, моделирование ферментов — это попытка воспроизвести на гораздо более простом уровне некий ключевой параметр ферментативной функции. Выявление определенного фактора, ответственного за каталитическую активность фермента в биологической системе, является трудоемкой задачей, требующей ясного представления о роли каждого компонента в катализе. Но, располагая подходящими моделями, мы можем оценить относительную важность каждого каталитического параметра в отсутствие других, не рассматриваемых в данный момент. Главное преимущество использования искусственных структур для моделирования ферментативных реакций состоит в том, что вещества можно создавать именно для изучения определенного конкретного свойства. Структура модели в дальнейшем может быть усовершенствована путем сочетания таких особенностей, которые дают наибольший вклад в катализ, и создания таких моделей, которые по своей эффективности действительно приближаются к ферментам. Таким образом, с помощью методов синтетической химии становится возможным создание миниатюрного фермента , который лишен макромоле-кулярного пептидного остова, но содержит активные химические группы, правильно ориентированные в соответствии с геометрией активного центра фермента. Этот подход называют биомимети-ческим химическим подходом к изучению биологических систем . Биомиметическая химия — это та область химии, где делается попытка имитировать такие характерные для катализируемых ферментами реакций особенности, как огромная скорость и селективность [350, 351]. Хочется надеяться, что такой подход в конце концов позволит установить связь между сложными структурами биоорганических молекул и их функциями в живом [c.263]

    Синтонами многих низкомолекулярных биорегуляторов являются различные оптически активные спирты. Наиболее эффективными способами получения таких соединений в современном органическом синтезе считается кинетическое разделение их рацемических смесей с помощью препаратов липаз и карбоксилэстераз. Такие ферменты не требуют кофактора и могут быть использованы для катализа этери-фикации спиртов в органических растворителях, проявляя при этом в ряде случаев высокую стереоселективность. В настоящее время применение в органическом синтезе нашли лишь некоторые коммерческие препараты липаз и карбоксилэстераз, которые не всегда удовлетворяют требованиям, предъявляемым к промышленным биокатализаторам. В связи с этим является актуальной разработка новых биокатализаторов, способных катализировать стереоселективную этерификацию рацемических спиртов. [c.58]

    Исследование прочностных свойств, термостабильности и каталитической активности катализаторных покрытий на основе промышлен-нь[х и опытных образцов катализаторов и водно-минеральных, алюмо-хромофосфатных и кремнийорганических адгезивов, в ходе которых бы ло испытано 14 типов катализаторов и 7 типов адгезивов, а каталитическая активность покрытий оценивалась по очистке газа от 8 разнообразных по природе примесей органических веществ на различных по конструкции модулях, позволило не только рекомендовать рецептуру катализаторного покрытия и отработать технологию его нанесения на непористые металлические носители, но и выявить ряд закономерностей, характеризующих прочностные свойства катализаторных покрытий, обнаружить химическое взаимодействие оксидных катализаторов и кремнийорганического адгезива, получить уравнения, позволяющие прогнозировать свойства покрытия и приготавливать катализа-тоэное покрытие с заданными свойствами. Таким образом, получены на/чные основы приготовления катализаторных покрытий для очистки отводящих газов, которые в силу их высокой эффективности смогут найти широкое применение в гетерогенном катализе в различных отраслях химической технологии. [c.180]

    Это означает, что свободная энергия внутримолекулярного (в переходном состоянии) гидрофобного взаимодействия Е-Н (т. е., величина Д <55%нутр. которая и определяет эффективность катализа) фактически пропорциональна свободной энергии переноса (экстракции) группы Н из воды в органический растворитель (АОэкстр)- [c.44]

    З-образный характер зависимости скорости ферментативной реакции от концентрации субстрата в катализе химотрипсином. Изменение среды в результате добавки органических соединений также оказывает заметное влияние на эффективность сорбции на активном центре химотрипсина гидрофобных компонентов реакции. Причина этого заключается, как правило, в том, что органическая добавка, повышая растворимость субстрата (или субстратоподобного ингибитора) в воде, удерживает его в водном растворе и затрудняет тем самым [c.145]

    Экспериментатьные исследования путей биосинтеза дают обширную информацию о химии этих процессов. Эти знания обеспечивают твердую основу для всей области бномиметических путей синтеза разнообразных природных соединений, которые используют стратегические принципы, разработанные Природой (см., например, синтез морфина, разд. 3.2.1). Однако, несмотря на многочисленные экспериментальные данные о механизме основных биохимических трансформаций, нам все еше слишком мало известно о способе действия фермента как катализатора. Был предложен целый ряд гипотез ддя объяснения замечательной способности ферментов осуществлять высоко эффективный и селективный катализ. Это было предметом многочисленных исследований по созданию специальных химических моделей ферментативного катализа (см, ниже). Кроме того, имеются еще более важные аспекты ферментативного катализа, а именно способность ферментов в нужный момент узнавать свой субстрат среди тысяч органических соединений, присутствующих в клетке, и регулируемость активности ферментов. Деятельность сотен и тысяч ферментов, одновременно оперируюшлх в любой живой системе", требует же -сткого управления с тем, чтобы в каждый данный момент и в каждом конкрет- [c.476]

    Современная энзимология представляет собой бурно развивающуюся науку. Ее достижения находят все более широкое применение в различных областях практической деятельности человека, н прежде всего в медицине и биотехнологии. В последние годы благодаря стремительному совершенствованию технической базы исследований и производства были выделены и подробнее охарактеризованы десятки новых ферментов, катализирующих самые разнообразные химические реакции. Очевидно, нет необходимости убеждать читателя в том, что по-настоящему эффективное практическое использование огромного объема фактических данных, накопленных в результате лабораторных исследований, невозможно без их всестороннего теоретического анализа и осмысления, без глубокого понимания принципов действия биологических катализаторов— ферментов. Здесь уместно напомнить, что уникальные свойства ферментных катализаторов — поразительная специфичность и огромная удельная активность — обусловливаются сочетанием сравнительно несложных закономерностей физической и физикоорганической химии. Ясно поэтому, что путь к свободному овладению фундаментальными представлениями науки о ферментах как мощным инструментом практической энзимологии лежит через постижение основ классического органического катализа. Главная цель предлагаемой вниманию советских читателей книги М. Бендера, Р. Бергерона и М. Ко-миямы как раз и состоит в том, чтобы помочь начинающим работать в области энзимологии преодолеть этот нелегкий путь. [c.5]

    Требования к оптимальной дисперсности и структуре катализаторов для ТЭ и органического катализа имеют суш,ественные различия. Наиболее четко это различие видно на примере нанесенных платиновых катализаторов. В органическом катализе для снижения расхода драгоценных металлов были созданы высокодисперсные платиновые катализаторы на носителях, обладаюш,ие благодаря большому разбавлению (0,1 — 1%) очень высокой удельной поверхностью (100—300 м г) и большой нагревостойкость ю. В электродах ситуация более сложная. Токообразующие реакции и транспорт веществ протекают в среде электролита, п кроме диффузионного торможения велика роль омических потерь. Для создания активных электродов в первую очередь необходима достаточно высокая удельная поверхность катализагора в единице объема, а не на единицу массы активной составляющей. Поэтому очень разбавленные нанесенные платиновые катализаторы найти широкого применения в ТЭ, по-видимому, не должны. Довольно жесткие требования предъявляются к электрической проводимости катализаторов. Для реализации в электроде возможно большей активности проводимость катализатора (активной массы) должна быть ие ниже эффективной проводимости электролита в активном слое, составляющей обычно 1 —10% проводимости свободного электролита. Необходимость снижения диффузионных потерь предъявляет вполне определенные требования к размеру и микропористости гранул катализатора и структуре сформированного активного слоя (см. 3.2). [c.132]

    Один из путей повьшгения эффективности асимметрическо-синтеза состоит в использовании каталитических количеств рального агента. Наиболее общим из известных в наст05пцее рмя энантиоселективных каталитических методов является при- ение хиральных комплексов переходных металлов. Извест-, чгго металлы способны катализировать многие органические и путем варьирования природы металла, органических хов и хиральных добавок можно направить пространствен-течение реакции практически по любому нужному пути. Металлокомплексный катализ растворимыми комплексами юв, в том числе и энантиоселективный, его принципы и змы подробно рассматриваются в гл. 27 (ч. 3). Здесь же мы 1ем лишь некоторые синтетические примеры каталитичес- реакций, приводящих к продуктам с высоким избытком одно-да энантиомеров. [c.85]

    До недавнего времени считалось, что обязательным компонентом всех ферментов являются белки. Был накоплен огромный материал, свидетельствующий, что именно белки способны опознавать определенные субстраты, обеспечивая тем самым высокую специфичность биологического катализа. Кроме того, многочисленные данные демонстрировали, что белки обеспечивают оптимальную ориентацию субстратов относительно функциональных групп фермента, осуществляющих химическое превращение. Этими группами в случае кислотного, основного и нуклеофильного катализа чаще всего являются группы, входящие в состав белка. В случае электрофильного и окислительно-восстановительного катализа в химическом превращении, как правило, участвуют специальные кофакторы — ионы металла или сложные органические молекулы. Но в этом случае белковая часть фермента организует работу кофактора так, чтобы обеспечивалась свойственная ферменту специфичность и одновременно с Высокой эффективностью реализовался каталитический потенциал кофактора. Однако в начале 80-х годов были от крыты и стали объектом интенсивных исследований ферменты, построенные из молекул рибонуклеиновых кислот (рибозимы). Интерес к этой группе ферментов резко усилился в связи с разработкой методов молекулярной селекции нуклеиновых кислот, позволившей, в частности, начать направленное конструирование рибозимов с разнообразными типами каталитической активности. [c.11]

    Циклополиэфиры н криптанды в настоящее время эффективно используются в практике для перевода солей металлов в органическую фазу, создания ион-селективных электродов, в гомогенном катализе, для извлечения редких металлов, разделения изотопов и т. п. Это иаправление получило развитие и в СССР (А. В. Богат-ский). [c.598]

    Авторы работы [96] изучали реакцию катализа на поверхности контакта ПХА и катализатора при действии органических соединений, являющихся продуктами разложения связующего вещества при горении твердого топлива, Полученные результаты использованы для анализа механизма взаимодействия углеводородного горючего с ПХА в присутствии катализатора хромита меди. Как показали опыты по измерению тепловыделения и энергии активации при различном содержании катализатора, процесс носит по существу гетерогенный характер. Хромит меди как катализатор играет двойную роль увеличивает скорость разложения ПХА и интенсифицирует окисление молекулы горючего. Комбинация этих двух факторов необходима для эффективного действия катализатора. Катализатор, обеспечивающий лищь интенсивное разложе ние ПХА, оказывает слабое влияние на скорость горения смесевых топлив. [c.308]

    В связи с этим механизм реакции может меняться в зависимости от природы катализатора, а также от концентрации восстанавливаемого вещества в растворе, температуры опыта и некоторых других условий. В ТО.М случае, когда на поверхности катализатора доля активного водорода достаточно велика и он достаточно быстро воспроизводится, восстановление не идет ступенями. Промежуточные продукты или не образуются вовсе, или по мере образования, не накапливаясь, восстанавливаются дальше в анилин. По такому пути идет восстановление нитробензола на скелетном никеле в нейтральной среде при 5°С, на скелетном никеле, промотированном родием или палладием, и на платиновом катализаторе во всем исследованном температурном интервале от 5 до 50°С. При недостатке водорода на каталитической поверхности реакция идет с большей или меньшей степенью селективности через образование и накопление нитробензола и продуктов его дальнейшего превращения. Ступенчатый ход восстановления мы наблюдали на скелетном никеле в щелочной среде во всем изученном интервале температур и в нейтральной среде при 25 и 40°С. С целью дальнейшего исследования реакции ка длитического восстановления нитробензола и проверки изложенных выше представлений о ее механизме нами совместно с дипломанткой И. А. Аксиненко проведено изучение восстановления смесей нитробензол-анилиновых продуктов. Гидрирование смесей органических соединений, как показано в работе Д. В. Сокольского и Л. В. Левченко [8], является одним из эффективных методов изучения адсорбционных факторов в катализе., [c.370]

    Катализ является основным и наиболее эффективным методом, обеспечивающим ход промышленных химических процессов, Химические производства, основанные на использовании ускорителей химических реакций — катализаторов, перерабатывают самое дешевое и доступное сырье природные газы и воздух, нефть и угсль, преобразуя их в синтетический каучук, полимеры, высококачественные бензины, аммиак, азотную и серную кислоту, различные органические растворители, краски и многие другие ценные продукты, столь нужные химической прэмышленности и всему народному хозяйству. [c.45]

    С меньшей однозначностью можно предполагать,что сходный механизм может играть заметную роль и в разностороннем каталитическом действии алюмосиликатных контактов в органической химии. При высокой ультрапористости таких контактов становятся частично доступными катионы алюминия, присутствующие во многих алюмосиликатах. Для кремния, повидимому, преобладают группы 8104 с эффективным зарядом кремния 81+. Их прямое участие в катализе сомнительно, кроме мест, где исчезает экранировка 81 кислородными атомами (ионами), окружающими центральные атомы кремния и являющимися по объему условным элементом структуры. Вероятно, не только в объеме, но и на поверхности основная масса ионов (атомов) экранирована кислородом. Кроме действия ионов алюминия, можно указать и на вторую возможность алюмосиликаты — характерные адсорбенты для катионов. Катионы Н" ", Na+, и т. д., поглощаясь скелетным контактом, после обезвоживания оказываются на поверхности в виде более доступных электростатических деформаторов. Особенно обещающим в этом отношении является ион водорода. Алюмосиликат с поглощенным протоном является своеобразной нелетучей и весьма прочной кислотой, что делает понятным наличие большого сходства в действии алюмосиликатных катализаторов и таких минеральных кислот, как фосфорная и серная. [c.20]

    Ряд исследователей специально предпринимали попытки обнаружить промежуточное возникновение триплетного состояния при стереопревращениях. Например, можно полагать, что переход иа синглетного в триплетное состояние катализируется парамагнитными веществами (которые могут не одинаково воздействовать на магнитные диполи я-связей, приводя к неоднородному полю [17]) или катализатором в несин-глетном состоянии, взаимодействующим с изом изующимся соединением [18]. В опытах, основанных на этом предположении, наблюдался, однако, лишь очень малый эффект, как, например, прп катализе редкоземельными галогенидами стереопревращения малеиновой кислоты [19]. Совсем недавно исследование влияния инертных газов на изомеризацию цис-2-бутта показало, что ксенон является весьма эффективным катализатором, что может быть частично обусловлено эффектом тяжелого атома [20], который, как это ни удивительно, отсутствует в случае стабильных органических иодидов. [c.210]

    Не следует, однако, переоценивать значение таких феноменологических обобщений. Их эффективность невелика там, где основную роль играет качественная неоднородность, т. е. наличие на поверхности двух или нескольких резко отличных по природе активности центров, на которых исходные вещества через различные промежуточные формы приводят к одним и тем же или к различным продуктам реакции. Но нри окислительном органическом катализе на активных окислах несомненно имеет место этот последний случай. Как кислород, так и олефины образуют по несколько различных поверхностных хемосорбированных форм, и еще большее число промежуточных форм, включающих оба компонента, прямым следствием этого является то, что никогда не удается добиться 100%-ного превращения в оДном направлении. Наконец, в большинстве случаев присутствует и реагирует несколько изомерных форм, в какой-то мере превращающихся друг в друга. Поэтому следует относиться с осторожностью к выводам ряда авторов о существовании простой корреляции между теплотой адсорбции кислорода или теплотой отщепления кислорода от кристаллической решетки катализатора, с одной стороны, и активностью катализаторов окислительных реакций, с другой стороны. Такие корреляции не вызывают больших сомнений для самых простых реакций, но вряд ли они могут быть строгими и сколько-нибудь универсальными для сложных реакций. Подобные взгляды уже давно высказывал Фрезер для окисления СО на MnOj [49]. [c.288]

    Херриот и Пиккер [19] подошли к решению этого вопроса несколько иным путем. Они исследовали двухфазную реакцию б(го/7-октилбромида с гидроксил-ионом. Согласно предсказанию Ингольда, если реакция происходит в органической фазе, должны преобладать продукты элиминирования, водная же фаза должна благоприятствовать протеканию замещения. Поскольку преобладали продукты элиминирования, то был сделан вывод, что реакция происходит в органической фазе. Кроме того, как и в предыдущей работе, было найдено, что скорость перемешивания (выше минимального значения) не влияет на скорость реакции. Этот факт сам по с е,.исключает межфазное явлешш как важный фактор. Независимость эффективности катализа от "вида катализатора помогает исключить из рассмотрения ми-I целлярные эффекты. [c.18]

    Показано, что при использовании водной мембранной системы, разделяющей две органические фазы, нельзя осуществить транспортирование из одной органической фазы в другую с помощью водонерастворимых четвертичных ониевых солей, таких, как гексадецилтрибутилфосфонийбромид, хотя он является эффективным межфазным катализатором. Это, по-видимому, обусловлено тем, что для эффективного катализа нет необходимости в глубоком проникновении четвертичной ониевой соли в водную фазу. [c.302]

    Эксперименты Эйгена [74] устанавливают верхний предел скорости реакций, протекающих по механизму общего кислотноосновного катализа. Например, из табл. 1-5 следует, что скорость процессов общего основного катализа с участием имид-азола и воды (реакций, имеющих больщое значение при физиологических значениях pH) не может превыщать величину 2,5-10 се/с . Очевидно, такой же предел характерен н для ферментативных реакций, включающих аналогичные каталитические стадии. Следует иметь в виду, что, хотя скорость переноса протона возрастает при переходе к основным катализаторам с большим значением рк а (таки.м, как фенолят-ион и ион аммония), увеличение р/(а приводит к снижению концентрации каталитически активного свободного основания при нейтральных pH, в результате чего наблюдается общее снижение скорости реакции. Следовательно, имидазол остается наиболее эффективным обобщенным основанием в физиологической области pH. Были измерены также константы скоростей переноса протона между органическими кислотно-основными парами [74], которые [c.45]

    Возвращаясь к переходным металлам, можно сказать, что если пересечение орбиталей может целиком быть сведено к совокупности -орбиталей, то это должно быть эффективным. Разность в энергиях -уровней обычно мала по сравнению, например, с разностями энергий U—U и 0—0 в органических молекулах. Это является основной идеей в рассуждениях Манго и Шахтшнайдера, которые первыми дали объяснение катализу ионом металла реакций, запрещенных по симметрии [79]. Наиболее детально они рассмотрели запрещенные взаимопревращения этилен — циклобутан. Эти реакции катализирует ряд комплексов металлов Ni(0), Fe(0), Ru(I) и Pd(II), иными словами, - и -соединений. Простые олефины или циклобутаны реагировать не будут, а более сложные системы будут. Например, квадрициклен (К) превращается под действием -ионов металлов в норборнадиен (Л) [80]. Последний в свою очередь может превратиться под действием комплексов - или -металлов в бис-норборнадиен (М) [81]. [c.443]


Смотреть страницы где упоминается термин Катализ органических эффективность: [c.61]    [c.495]    [c.29]    [c.495]    [c.485]    [c.485]    [c.299]    [c.61]    [c.41]    [c.76]    [c.431]    [c.242]    [c.132]   
Механизмы неорганических реакций - Изучение комплексов металлов в растворе (1971) -- [ c.548 ]




ПОИСК







© 2024 chem21.info Реклама на сайте