Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фильтрование глубинное

    Фильтрование с закупориванием пор без образования осадка характерно для разделения суспензий, содержащих в небольшой концентрации относительно малые частицы, взвешенные в жидкости с высокой вязкостью, и наблюдается, например, при очистке сахарных сиропов, прядильных растворов и трансформаторных масел. В таких процессах, называемых иногда глубинным фильтрованием, используют различные перегородки, состоящие из зернистых или волокнистых частиц, а также другие гибкие и негибкие перегородки (глава XI). [c.89]


    Грунтовые воды формируются различными путями. Поверхностные грунтовые воды формируются главным образом за счет атмосферных осадков. Вместе с тем они наиболее загрязнены микроорганизмами, органическими веществами, поэтому для целей водоснабжения непригодны. Грунтовые воды, залегающие на глубине от нескольких десятков сантиметров до 100 и более метров, возникают преимущественно за счет фильтрования осадков или пластовых вод и имеют различную степень минерализации. В них большей частью преобладают ионы НСОз, Са , ЗО . Вблизи населенных пунктов в грунтовых водах может быть повышенное содержание ЫОг, НОз, СГ. [c.65]

    Теоретически исследован процесс глубинного фильтрования на основе капиллярной м одели пористой перегородки с неоднородными порами [135]. Распределение пор по размеру определено методом капиллярного давления. Указано, что скорость возрастания разности давлений при глубинном фильтровании в связи с задерживанием твердых частиц в порах перегородки представляет сложное явление, зависящее от многих элементарных актов отложения частиц. При анализе процесса на основе модели с неоднородными порами найдено, что скорость изменения разности давлений сильно зависит от двух факторов а) начального распределения пор по размерам б) скорости закупоривания единичной поры. Отмечено, что скорость закупоривания является функцией ряда переменных, например, поперечного размера поры, положения по толщине перегородки, времени. Установлено, что наклон линии в координатах степень задерживания — разность давлений при малых степенях задерживания определяется обоими упомянутыми факторами. Указано на значительные вариации в результатах экспериментов. [c.112]

    Применительно к глубинному фильтрованию рассмотрены закономерности течения суспензий в пористых средах [116], в частности вопрос о размывании осадка из тонкодисперсных частиц в порах фильтровальной перегородки. Отмечено несовершенство модели фильтрования с постепенным закупориванием пор ввиду возможности закупоривания их в узких сечениях отдельными частицами. [c.109]

    В качестве пылегазового потока использовались отходящие дымовые газы мартеновских печей, содержащие плавильную пыль концентрацией в среднем около 0,4 г-м размер частиц пыли до 2 мкм. При прохождении пылегазового потока через фильтровальную перегородку, толщина которой составляла несколько сантиметров, по истечении 30—40 с от начала фильтрования на глубине 5—6 мм от поверхности перегородки возникала узкая горизонтальная полоска, которая была окрашена в характерный для плавильной пыли буро-коричневый цвет. Эта полоска с течением времени расширялась в направлении к поверхности фильтровальной перегородки до тех пор, пока не заполняла весь ее лобовой слой. При этом окрашенный слой почти не распространялся в более глубокие зоны перегородки. На основании полученных сведений высказана гипотеза, объ- [c.110]


    Поэтому был сконструирован специальный моделирующий фильтр, названный камерным. Суспензия заливалась в сосуд прямоугольной формы, снабженный в нижней части однолопастной мешалкой с горизонтальной осью вращения (200 об-мин- ). В суспензию на определенную глубину опускался по направляющим камерный фильтр, поверхность фильтрования которого могла размещаться под различными углами к горизонту соответственно тому участку поверхности на листоформовочной машине, который моделировался в данном опыте. При этом величина гидростатического давления на том же участке машины моделировалась соответствующим вакуумом, создаваемым в камерном фильтре. Включение вакуума и измерение продолжительности фильтрования производились автоматически. [c.122]

    Процесс гидрооблагораживания как заключительную стадию очистки можно использовать не только при производстве топлив и масел, но и для очистки парафинов, получаемых в результате депарафинизации масел. Фильтрование через слой неподвижного адсорбента, а также контактная очистка отбеливающей глиной в ряде случаев не обеспечивают достаточной глубины очистки парафинов. В связи с этим в промышленных условиях процесс гидроочистки масел комбинируют с гидроочисткой парафинов. В режиме гидроочистки нормальные парафиновые углеводороды не подвергаются гидроизомеризации и гидрокрекингу. [c.248]

    На рис. Х-8 показана зависимость скорости фильтрования от толщины уменьшающегося слоя вспомогательного вещества (перлит) и скорости перемещения ножа при разделении суспензии гидроокиси алюминия (скорость вращения барабана 0,67 об/мин). Из рисунка следует, что при недостаточной скорости перемещения ножа (1 мм- МИН ) сопротивление слоя вспомогательного вещества возрастает, несмотря на уменьшение его толщины. Это объясняется тем, что за 1 оборот барабана частицы гидроокиси алюминия проникают в слой вспомогательного вещества на глубину более 1,5 мм и закупоривают поры слоя при этом частицы проникают в слой на глубину менее 3 мм. [c.352]

    Для поддержания удовлетворительной скорости фильтрования следует а) при интенсивном проникании твердых частиц во внутреннюю часть слоя вспомогательного вещества заменить его на другое с большей способностью задерживать твердые частицы б) при закупоривании наружной части слоя вспомогательного вещества на заметную глубину увеличить скорость перемещения ножа. [c.356]

    Проведены лабораторные опыты [378] по разделению суспензии гидроокиси железа концентрацией 1—20 г/л с использованием летучей золы в качестве вспомогательного вещества. Установлено, что сначала происходит фильтрование с закупориванием пор слоя вспомогательного вещества, а затем — с образованием осадка над этим слоем. При этом на графике в координатах объем фильтрата — общее сопротивление получаются линии, состоящие из двух частей первая часть — восходящая кривая, показывающая, что сопротивление слоя вспомогательного вещества увеличивается вследствие закупоривания его пор вторая часть — восходящая прямая, показывающая, что на слое вспомогательного вешества образуется осадок, толщина которого увеличивается пропорционально объему фильтрата. Отмечено проникание твердых частиц суспензии в слой вспомогательного вещества на значительную глубину. [c.358]

    Обычно в процессе фильтрования участвуют непроводящие частицы и волокна, и распределение заряда ограничено по поверхности и в глубину. Для этого случая Крупп [462, 468] вывел уравнение [c.334]

    Адсорбент считается отработанным, когда качество отобранного после фильтрования продукта (смесь фракций разной глубины очистки) не отвечает предъявляемым требованиям. После этого фильтрование заканчивают и проводят последующие операции. Выгруженный из фильтра адсорбент регенерируют на отдельной установке выжигом в печи при 500—650 °С. На этой же установке подогревается свежий адсорбент. Основ ным узлом установки является узел фильтрования (рис. 83), состоящий из четырех последовательно включенных фильтров (-на рисунке —два) три из них работают постоянно, в четвертом проводится регенерация адсорбента. [c.246]

    Значительные преимущества перед процессами перколяции имеет непрерывный процесс адсорбционной очистки фильтрованием нагретого или растворенного в бензине или лигроине сырья (масляных дистиллятов и деасфальтизатов) непрерывность возможность получения масел требуемой глубины очистки, вплоть до получения белых масел непрерывная регенерация отработанного адсорбента лучшие технико-экономические показатели. [c.247]

    Задача. Имеется патронный фильтр, внешний и внутренний радиусы которого о и го соответственно (рис. 25). Экспериментально установлено, что на концах фильтра, где напоры жидкости равны к1 и 2, вертикальное фильтрование проникает на глубину к и 2 соответственно. Известны также коэффициенты фильтрования основной его части и концов >0, и 2>0. [c.92]

    Для фильтрования мутных или окрашенных растворов через адсорбент можно использовать баллончик, длинный капилляр которого на конце оканчивается трубочкой. В эту трубочку вставляют ватный фильтр на глубину 2 см, затем насыпают столбик адсорбента, который уплотняют постукиванием и наконец закрывают ватой. Адсорбентом в случае водных или спиртовых растворов может быть активированный уголь, в случае неполяр ных растворителей — силикагель или окись алюминия. В связи с малой проходимостью приготовленного таким образом фильтра, первую каплю [c.695]


    В динамических условиях при фильтровании раствора щелочи через слой активного угля глубина экстракции при сохранении постоянного соотношения йи/ан.и возрастет, но концентрация салицилата в щелочи, разумеется, будет понижаться в соответствии с уменьшением оставшегося количества салицилата в адсорбированном состоянии. [c.187]

    В процессе фильтрования твердые частицы либо задерживаются на поверхности фильтровальной перегородки, образуя осадок, либо проникают в ее глубину, задерживаясь в порах. В соответствии с этим различают фильтрование с образованием осадка и фильтрование закупориванием пор. Иногда их совмещают (применяя фильтрование с образованием осадка и закупориванием пор). [c.230]

    Растворы термолабильных веществ стерилизуют фильтрованием с помощью мембранных и глубинных фильтров, задерживающих микроорганизмы и их споры. Мембранные фильтры характеризуются ситовым механизмом задержания и постоянным размером пор при эксплуатации. Максимальный диаметр пор стерилизующего мембранного фильтра не превышает 0,3 мкм. [c.23]

    Глубинные фильтры с помощью этого теста не проверяют Фильтрование проводят, применяя положительное давление (до 0,7 МПа для мембранных фильтров) с нестерильной стороны установки. При использовании глубинных фильтров необходимо строго соблюдать указанные в паспорте температуру, pH, давле- [c.23]

    Изложены результаты лабораторных исследований, показавших возмож-] Ость увеличения скорости фильтрования, глубины обезмасливания парафинов при депарафинизации дистиллятного сырья. Изучен механизм явлений, происходящих при обработке суспензий парафинов ультразвуком. Методами седимен-тометрии. реологии и микрофотографии показано, что при озвучивании суспензий рафип.атов в селективных растворителях происходит дезагрв1ация кристаллических агрегатов твердой фазы и улучшаются условия их дальнейшею роста и от.-дывки от масла. Для суспензий дистиллятного сырья эти явления играют положительную роль и улучшаются все показатели процесса, а для суспензий остаточного сырья глубина обезмасливания повышается, но скорость фильтрования снижается в результате ультразвуковой обработки. [c.161]

    При заданных температуре застывания вырабатываемого масла и пропускной способности установки по сырью к показателям, характеризующим работу установки низкотемпературной депарафинизации, относятся прежде всего следующие глубина отбора масла (% масс, от сырья), скорость фильтрования, содержание масла в гаче (или петролатуме). Важным показателем, в значительной мере предопределяющим эксплуатационные расходы, является кратность растворителя к сырью. [c.80]

    Отмечена сложность исследования равномерности проникания твердых ча стйц в пористый слой при разделении малоконцентрированных суспензий с тонкодисперсными частицами и вязкой жидкой фазой, что объяснено совместным влиянием ряда микрофакторов и небольшой глубиной проникания [128]. Распределение частиц по толщине слоя исследовано с помощью установки для фотометрирования интенсивности свечения люминофорных частиц, аккумулированных слоем. На фильтре с горизонтальной перегородкой из лавсановой ткани поверхностью 22,4 см формировался слой перлита путем разделения его суспензии в кремнийорганической жидкости при концентрации 2,5%. Затем на фильтре разделялась суспензия люминофорных частиц в той же жидкости при концентрации 0,01—0,25% и постоянной разности давлений. Установлено, что аккумулирование частиц в пористом слое происходит на относительно небольшой глубине, которая не зависит от времени фильтрования при данной концентрации, но существенно увеличивается при ее уменьшении с повышением вязкости жидкой фазы глубина проникания частиц также увеличивается. Последнее объяснено следующим образом. При изменении направления движения жидкости в извилистой поре сила инерции приближает твердую частицу к стенкам поры, что сопровождается торможением частицы и уменьшением глубины ёе проникания в пористый слой. При увеличении силы трения, обусловленной повышением вязкости жидкости, приближение твердой частицы к стенкам поры затрудняется и глубина ее проникания в пористый слой увеличивается. [c.111]

    Относительно фильтрования Минц ввел термин контактная коагуляция. В дальнейшем это понятие было конкретизировано на основе теории Дерягина. Фильтрование неагрегированных дисперсий обеспечивает эффект водоочистки на основе двухстадийного механизма, подобного рассмотренному применительно к микрофлотации. Однако и транспортная стадия, и стадия прилипания в случае фильтрования имеют свои особенности. Отношение скорости фильтрования к размеру гранул в случае фильтрования на так называемых скорых фильтрах почти на один-два порядка меньше, чем в случае всплывающего пузырька. Это приводит к снижению роли ДГВ. При фильтровании осаждение в большей степени осуществляется за счет седиментации, если только разность плотностей частицы и среды не мала. Так как градиенты скорости при фильтровании на один-два порядка меньше, чём при флотации, резко снижается гидродинамический отрыв частицы. Это означает, что адагуля-ция при фильтровании может протекать при малой глубине дальней потенциальной ямы. Важным следствием является то, что при фильтровании возможно и многослойное покрытие по- [c.373]

    Выполнены [377] опыты по очистке полифторорганосилокса-новой жидкости вязкостью 500 сСт (при 20 °С) от тонкодисперсных частиц угля при концентрации их до 5% с использованием кизельгура, перлита и древесной муки. Установлено, что наиболее целесообразно применение перлита в виде слоя толщиной 3 мм, предварительно нанесенного на лавсановую ткань, так как кизельгур имеет в 3 раза большую насыпную массу, а древесная мука не задерживает частицы угля. При этом обнаружено, что при пропускании упомянутой жидкости через слой перлита сначала происходит фильтрование с постепенным закупориванием пор (частицы проникают в слой на глубину 1—1,5 мм), а затем — с образованием осадка. Это объяснено наличием в жидкости достаточно большого числа частиц угля, что благоприятствует образованию из них сводиков над входами в поры слоя вспомогательного вещества. [c.358]

    В ГрозНИИ разработан процесс, совмещающий обезмасливание парафинового дистиллята с фракционной кристаллизацией парафина, предусматривающий полный противоток растворителя по отношению к сырью и позволяющий получать широкий ассортимент парафинов с температурой плавления от 45 до 68 °С [75, 76]. Этот процесс включает три ступени фильтрования, предназначенные для получения глубокообезмасленного парафина с температурой плавления 52—54 °С, который затем подвергают фракционной кристаллизации на четвертой и пятой ступенях фильтрования. Такой процесс позволяет получить высокоплавкий парафин с температурой плавления до 58°С и низкоплавкий — с температурой плавления 50—52 °С. Одним из условий эффективности этого процесса является ограниченное содержание масла в растворителе. Достоинством его является не только гибкость, но и повышенное содержание нормальных парафиновых углеводородов как в высокоплавком (95,8% масс.), так и в низкоплавком (92,1% масс.) парафинах. Это объясняется раздельной кристаллизацией твердых углеводородов, при которой изопарафины с длинными прямыми участками цепи и нафтены с длинными боковыми цепями кристаллизуются в последнюю очередь. Разработке процесса обезмас-ливания с последующей фракционной кристаллизацией парафина предшествовали теоретические исследования [7, 64], в результате которых предложены уравнения, позволяющие с учетом требуемой глубины обезмасливаиия парафина и содержания масла в исходном сырье определять среднюю концентрацию масла в жидкой фазе и затем оценить коэффициент концентрирования на каждой стадии вакуумного фильтрования (образование осадка, его холодная промывка и подсушка), а следовательно, и общий концентрирующий эффект вакуумного фильтра. [c.160]

    II,2% (масс.) масел. Снижение содержания смолисто-асфальтеновых веществ в гудроне после его обработки дихлорэтаном повышает глубину деасфальтизации и селективной очистки остаточного сырья, а значительное уменьшение концентрации твердых углеводородов в рафинате приводит к увеличению скорости фильтрования в процессе депарафинизации, увеличивая производительность установки и в 1,5 раза уменьшая выход петролатума. Предварительное удаление из гудрона мангышлакской нефти высокоплавких компонентов и части смолисто-асфальтеновых веществ позволяет увеличить выход остаточного масла на 1% (масс.). Асцерин может быть использован для защиты железобетона от коррозии и в качестве заменителя озокерита в процессах приготовления смазок. [c.162]

    Размер фильтрующих плит, применяемых в промышленности камерных фильтр-прессов, изменяется от 720x720 до 1200x1200 мм, площадь поверхности фильтрования от 16 до 140 м , количество фильтрующих плит от 24 до 67, глубина камер составляет 40 мм. [c.385]

    Билл и Силверман [79] испытывали опытную установку с фильтром из шерстяных волокон нержавеющей стали, обслуживающую 400-тонную мартеновскую печь. Глубина фильтрующего слоя 50 мм, средняя температура фильтрования 65°С, эффективность улавливания равна 96% при скоростях фильтрования 500 и 750 мм/с. При лабораторных испытаниях использовали пары, полученные в результате сжигания порошкообразного карбонила железа при температуре до 320 °С. Сопротивление чистого фильтра невысоко и составило менее 0,5 кПа. Несмотря на то, что обычное сопротивление составляло 8,8 кПа, конструкция фильтра позволя- [c.372]

    Перколяционяой очистке подвергают масла и парафины, прошедшие очистку избирательными растворителями или кислотнощелочную очистку. В зависимости от вязкости фильтруемого продукта, с которой связана глубина проникания масла в поры адсорбента и, следовательно, эффективность очистки, фильтрование проводят при температурах от 20 до 100 °С. Парафины фильтруют после их расплавления. Высоковязкие продукты перед фильтрованием растворяют в бензине или лигроине. В зависимости от вязкости очищаемого сырья выбирают адсорбент с соответствующим размером зерен или гранул (0,5—2 мм для вязких масел и 0,3—0,5 мм для маловязких). [c.245]

    Физико-механические свойства материалов зависят в основном от свойств исходного сырья, из которого их изготовляют, и от технологии изготовления. По при1щипу фильтрования шщяшы делятся на поверхностные и объемные. Мате илы поверхностного типа имеют тол-шину в несколько раз большую, чем размер фильтруемых частии, и задерживают эти частиша в основном на своей повфхности. Объемные материалы имеют толщину на н колько порядков больше, чем размер фильтруемых частиц, которые оседают главным образом в глубине материала. [c.106]

    Процесс фильтрования происходит следующим образом 4>ильтрующаяся жидкость иод напором поступает в фильтр через его внешнюю поверхность, а вытекает через внутреннюю (внутренняя поверхность представляет собой цилиндр с радиусом Го). Значит, через верхний и нижний концы фильтра фильтрование протекает вертикально на глубину /1 и /а с коэффициентами и 2 соответственно, а через среднюю (основную) часть, длина которой I,— горизонтально с коэффициентом фильтрования к. Из смысла задачи следует, что I значительно больше, чем /1 и Ь- [c.90]

    После разгрузки фильтра и регенерации фильтровальных элементов цикл работы повторяется. Глубина очистки фильтрата определяется задерживаюсцей способностью керамики. Длительность цикла фильтрования и последовательность операций устанавливаются экспериметально. [c.537]

    Просушенные детали посыпают мелкодисперсным порошком с высокой поглотительной способностью, который извлекает жидкость из дефектных мест (рис. 119, б). Для этого применяют окись магния, силикагель, маршаллити другие вещества. Покрытые порошком детали выдерживают 20—30 мин. Затем их осматривают в фильтрованном ультрафиолетовом свете. Крупные дефекты обнаруживают в первые минуты после покрытия детали порошком. Обнаруженные дефекты имеют вид светящихся линий или пятен (рис. 120). Люминесцентный метод позволяет выявлять дефекты с шириной раскрытия 1—2 мкм и глубиной 5—10 мкм. [c.164]

    Существует несколько технологических вариантов промышленного гфоизводства лимонной кислоты. Первоначально был разработан вариант процесса, основывающийся на поверхностной ферментации, позднее — на глубинном культивировании. Последнее ведется в две стадии на первой стадии идет рост мицелия, а на второй, после выхода культуры в стационарную фазу — интенсивный синтез лимонной кислоты. В конце ферментации массу мицелия отделяют путем фильтрования и промывают. Затем при pH < 3,0 в виде кальциевой соли осаждают щавелевую кислоту, а из маточного раствора вьщеляют лимонную кислоту в форме средней соли, кристаллизующейся в комплексе с четырьмя молекулами воды. Свободную кислоту вьщеляют из промытых кристаллов соли после их обработки сульфатом кальция. Высокоочищенные препараты лимонной кислоты получают после дополнрггельной процедуры очистки методом ионообменной хроматографии. Выход продукта составляет 85 %. [c.60]

    Модель фильтра ФПАКМ изображена на рис. 6-3. Корпус 8 имеет конусный штуцер 2, днище 10 с отводным патрубком 1, крышку 6. Резиновая диафрагма 3 имеет гофрированную складку 7 по периферии, которая обеспечивает свободное перемещение диафрагмы на глубину фильтра под действием сжатого воздуха. Рабочая камера. фильтра ограничена снизу решеткой 9, на которую уложена фильтровальная ткань И, а сверху решеткой 4. В корпус фильтра через штуцер 2 поочередно подают сус-лензию, промывную жидкость, воздух для операций фильтрования, промывки осадка, продувки его воздухом. Для отжима осадка на диафрагму через патрубок 5 подают сжатый воздух. На модели фильтра снимают параметры процесса отжима осадка диафрагмой, определяют необходимость проведения и длительность предварительного отжима осадка диафрагмой перед его промывкой и просушкой воздухом. Необходимо учитывать, что при сильной адгезии осадка к резине диафрагмы ФПАКМ может оказаться неработоспособным вследствие невозможности его механизированной разгрузки. Если при фильтровании на модели ФПАКМ через одну и ту же ткань наблюдается унос твердой фазы в фильтрат больше чем в трех опытах, можно ставить второй слой ткани, что допустимо и на промышленном фильтре. На модели ФПАКМ (см. рис. 6-3) можно также моделировать процессы, протекающие яа фильтре ФАМО, если в горизолтальную часть резиновой диафрагмы вместо резины [c.211]


Смотреть страницы где упоминается термин Фильтрование глубинное: [c.39]    [c.10]    [c.357]    [c.360]    [c.360]    [c.198]    [c.207]    [c.35]    [c.339]    [c.374]    [c.118]    [c.122]   
Фильтрование (1971) -- [ c.86 ]

Фильтрование (1980) -- [ c.89 , c.109 , c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Глубины

Фильтрование



© 2025 chem21.info Реклама на сайте