Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение магния никеле

    Определение магния, никеля и цинка [8] [c.418]

    Пассивность наблюдается в определенных условиях у титана, алюминия, хрома, молибдена, магния, никеля, кобальта, железа и других металлов. Очень многие металлы в той или иной степени в зависимости от условий склонны пассивироваться. [c.303]

    ОПРЕДЕЛЕНИЕ СУММЫ НИКЕЛЯ С МАГНИЕМ [c.179]

    Определение суммы никеля с магнием....... [c.204]

    Что такое фактор пересчета и как его определяют 4. Как определяют барий осаждением сульфат-ионом 5. Как определяют железо осаждением аммиаком 6. В чем состоит особенность определения магния осаждением гидрофосфатом аммония 7. Как определяют никель осаждением диметилглиоксимом  [c.123]


    Шварц и Нилова [465] описали метод спектрального определения 0,0005—0,01 % магния в никеле повышенной чистоты со средней квадратичной ошибкой 5—10% в дуге постоянного тока. Об определении магния в катодном никеле из растворов см. в [594, 595, 818]. [c.171]

    Кобальт. При определении магния в кобальте применяют методику, аналогичную применяемой для никеля [445]. [c.171]

    Описан фотометрический метод определения магния в никеле с 8-оксихинолином [911]. Мешающие элементы осаждают в виде оксихинолинатов, затем в присутствии бутилцеллозольва экстрагируют оксихинолинат магния хлороформом и фотометрируют окрашенный экстракт. Метод связан с использованием малодоступного бутилцеллозольва и поэтому применяется редко. [c.213]

    Бронзы безоловянные. Метод спектрального анализа по окисным стандартным образцам с фотографической регистрацией спектра Бронзы безоловянные. Метод рентгеноспектрального флуоресцентного определения алюминия Бронзы жаропрочные. Метод определения меди Бронзы жаропрочные. Методы определения кремния Бронзы жаропрочные. Методы определения хрома Бронзы жаропрочные. Метод определения фосфора Бронзы жаропрочные. Методы определения железа Бронзы жаропрочные. Метод определения никеля Бронзы жаропрочные. Метод определения свинца Бронзы жаропрочные. Методы определения циркония Бронзы жаропрочные. Метод определения кобальта Бронзы жаропрочные. Методы определения титана Бронзы жаропрочные. Определение хрома, никеля, кобальта, железа, цинка, магния и титана методом атомно-абсорбционной спектрометрии [c.576]

    Никель. Метод определения магния [c.578]

    Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определения палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.579]

    Разработаны атомно-абсорбционные методики определения меди, никеля, кобальта, кадмия, железа, цинка, марганца, свинца, кальция, магния и калия в сточных и природных водах при содержании 0,005—1 мг/л ртути экстракционным пламенно-фотометрическим методом в сточных водах на уровне [c.193]


    Химико-спектральное определение бериллия, магния, кальция, бария, алюминия, титана, ванадия, вольфрама, хрома, марганца, железа, кобальта, никеля, меди, серебра, золота, цинка, кадмия, индия, олова, свинца, висмута, галлия и сурьмы в боре, борном ангидриде и борной кислоте Химико-спектральное определение магния, кремния, алюминия, меди, свинца, железа, фосфора, мышьяка, молибдена и натрия в боре..... [c.527]

    Уоллес [214] обнаружил, что в пламени пропан — воздух присутствие 200 мкг/мл алюминия уменьшало абсорбцию растворов магния до 1/10 обычной величины. Содержание свинца, меди, никеля и марганца в количестве 200 мкг/мл создавало также значительный эффект. Применение 8-гидроксихинолина (оксина) позволяло устранить влияние многих элементов, за исключением кремния. Фирман [215] обнаружил значительные помехи при определении магния в пламенах угольного газа и в пламени пропан — воздух. [c.99]

    Спектр. 525 нм ННз, NH4, K N 0.002-0,1% Определение магния в никеле 6, 7 [c.418]

    Мурексид в особенности пригоден для комплексометрического определения кальция, никеля и меди. Комплексы мурексида с остальными катионами очень нестойки, и поэтому мурексид не вызывает появления заметной окраски в разбавленных растворах. Это относится к ионам бария и магния. Другие комплексные ионы уже в слабощелочной среде разлагаются комплексные соединения цинка или кадмия с мурексидом в растворе аммиака переходят в бесцветные комплексы Ме(Ь Нз) +. [c.53]

    Определению мешают никель, кобальт, цинк и кадмий, вступающие в реакцию с индикатором, алюминий и висмут, образующие нерастворимые фосфаты, и сульфаты, арсенаты и хроматы, реагирующие со свинцом. Допустимы только малые количества хлоридов, ацетатов, магния и марганца. Нитраты щелочных металлов могут присутствовать в довольно больших количествах. [c.394]

    Определение свинца, никеля, цинка и магния [c.435]

    Металлы и неметаллы играют известную роль и в аналитической химии. Большая группа металлов — алюминий, железо, цинк, магний, олово, никель — применяются в качестве восстановителей. Натрий используют для определения хлора в органических веществах, при восстановлении и гидрировании многих органических соединений, для глубокой осушки органических жидкостей, для приготовления амальгам и т. д. Бром служит окислителем при аналитических определениях марганца, никеля, хрома, висмута, железа, цианидов, роданидов, мочевины, муравьиной кислоты. [c.20]

    Определение магния, никеля и цинка можно проводить различными способами. В аликвотной части раствора, после добавления цианида калия, магний определяют прямым титрованием комплексоном по эриохрому черному Т. При последующем демаскировании добавлением ( юрмальдегида выделяется свободный цинк, который также титруют раствором комплексона. Во второй порции раствора определяют суммарное содержание всех трех катионов обратным титрованием избытка комплексона раствором сульфата магния. В оттитрованном растворе проводят еще контрольное определение цинка и никеля следующим образом к раствору прибавляют цианид калия в течение 5 мин. образуются цианидные комплексы никеля и цинка выделившийся комплексон титруют раствором сульфата магния затем выделяют свободный цинк добавлением в раствор формальдегида и скова титруют комплексоном. [c.418]

    При определении натрия в оксиде никеля в стандартные растворы вводят хлорид никеля (2 мг/мл), используют фильтровый фотометр фирмы К. Цейсс (модель III) и пламя ацетилен—воздух [1108]. Анализ титановых белид и оксида титана проводят после отделения титана отгонкой тетрафторида титана [516] или сорбцией сульфоса-лицилатного комплекса титана анионообменником [1111]. Оксиды цинка, железа, магния, никеля переводят в раствор с помощью НС] [62]. Натрий определяют атомно-эмиссионным методом в пламени ацетилен—воздух с помощью пламенно-фотометрической установки монохроматора УМ-2 с фотоумножителем ФЭУ-38. Основные параметры установки напряжение на ФЭУ 1200 В, расход ацетилена 2 л/мип, воздуха 8 л/мин. Эталонные растворы готовят в интервале концентраций натрия 5-10 —1 10 %. Изучено влияние НС1, К, Са, Fe и Мп на интенсивность резонансных линий натрия. Погрешность определения — г = 0,03 0,05 [79]. [c.170]

    Задачей качественного анализа является не только определение элементов, находящихся в данном исследуемом неществе, но также и оденка их относительных количеств. Продажный хлористый марганец. получаюЩ ИЙсл, например, из пиролюзита, почти в-сегда содержит следы кальция, магния, никеля, кобальта и железа. Если бы аналитик,. найдя все эти вещества, своем отчете указал, что исследованное вещество состоит из хлористых соединений кальция, магння, никеля, кобальта, железа и ма рган.ца , то это понятно, могло бы привести к ошибочным заключениям. Ответ аналитика должен был бы быть следующим исследованное вещество является хлористым марганцем с примесью сле. юв кальция, магния и т. д. . [c.486]

    В основном этот метод аналогичен методу определения примесей в цирконии (см. стр. 172) он дает возможнссть определить алюминий, кальций, кремний, магний, никель и титан. [c.183]


    Магний и никель. Для одновременного определения магния и никеля титруют сумму их с эриохром черным Т при pH 10. В другом растворе определяют никель обратным титрованием избытка комплексона III раствором USO4 индикатором пиридил-азо-нафтолом (изменение окраски от желтой до сиреневой или синей) [360]. Титруют также при pH 10 сумму магния и никеля раствором комплексона III со смесью мурексида и эриохром черного Т в качестве индикатора (в эквивалентной точке окраска меняется от оранжевой до фиолетовой). [c.93]

    С помощью магона определяют магний в чугуне [145], в стали и в оксидных включениях в ней [261], в металлическом никеле [413], в теллуре высокой чистоты [482], в золоте высокой чистоты [246], в окиси бериллия высокой чистоты [508], в горных породах [489], в известняке [929], в почве [340, 1025], в хлористом натрии высокой чистоты [340], в материалах, содержащих большие количества цинка [944], в питьевой воде [808], в морской воде и рассолах [283], в биологических материалах [929]. Предложен дифференциальный фотометрический метод определения магния с магоном [457]. [c.137]

    При определении магния в никеле последний и содержащиеся в нем примеси отделяют экстрагированием диэтилдитиокарбаминатов хлороформом следы металлов маскируют при помощи K N [876]. Можно маскировать никель и примеси,цианидами и триэтаноламином [149]. О маскировании тяжелых металлов цианидами в присутствии NHjOH-H l см. в [877]. [c.139]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]

    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]

    Метод определения сурьмы Метод определения меди Метод определения висмута Метод определения мышьяка Метод определения цинка и меди Метод определения натрия Метод определения железа Метод огфеделенм кальция Метод определения магния Метод определения олова Метод определения теллура Методы определения серебра Методы определения никеля Спектральный метод определения [c.580]

    Джордан и Аллеман [2] изучали реакции отдельных металлов с ЕОТА. Они применяли 1-м. раствор ЕОТА и 0,01-м. растворы следующих металлов кадмия (II), кальция, кобальта (II), меди (II), свинца (II), магния, никеля (II) и цинка. В результате нашли, что в основном воспроизводимость и правильность результатов титрования были в пределах 0,5% от теоретического содержания. Для свинца воспроизводимость и правильность составили 1%. Аллеман [5] приводит данные о точности определений в пределах 3% при анализе растворов с низкой концентрацией металла порядка 5-10- -м. [c.82]

    Наиболее предпочтительным покрытием является система магний — никель. Никелевое покрытие можно наносить любым подходящим способом, например гальваническим. После нанесения никелевого покрытия риагний термически диффундирует в металл, образуя протекторное покрытие, анодное к металлической подложке. Для определения эффективности такого покрытия были проведены различные сравнительные испытания с другими системами покрытий. Например, в 1 W1 растворе Na l измеря- [c.194]

    Такую навеску удобло брать для главной порции, в которой определяют кремнекислоту, окись алюминия и др., щелочноземельные металлы и магний но более 1 г брать не следует, потому что если взять большую навеску, то осадок гидроокиси алюминия и др. будет слишком объемистым. Навеску не следует и слишком уменьшать, если требуется точное определение марганца, никеля и стронция. Для определения щелочных металлов очень удобна навеска в 0,5 г. В общем можно принять за правило не брать для анализа бо.гее 2 г пробы, если ее будут сплавлять с карбонатами щелочных металлов, как это требуется при определении серы, фтора и хлора. Для определения СОг навеска может быть увеличена до 5 г или даже более, если содержание этого компонента очень мало. При этом на определение рас ходуется не больше времени, чем при навеске в 1 г, а результаты получаются значительно более точньши. Для определения ванадия также обычно нужна навеска, превышающая 2 г. [c.890]

    При определении магния в сплавах никеля с помощью низкотемпературных пламен Эндрью и Никольс [25] выяснили, что присутствие 0,5 мкг/мл А и 0,2 мкг/мл 81 уменьшало абсорбцию магния более чем на 50%. Наличие 500 мкг/мл никеля позволяло контролировать влияние 1 мкг/мл А1 или 81 на абсорбцию магния. [c.99]

    Т. R. Andrew, Р. N. R,. Ni hols, Analyst, 87, 25 (1962). Применение метода атомной абсорбции для быстрого определения магния в никеле и никелевых сплавах, используемы.х в электронной промышленности. [c.210]

    Анализ вольфрама повышенной чистоты и его препаратов (вольфрамовый ангидрид, вольфрамовая кислота, паравольфра-мат аммония) на содержание олова, висмута, свинца, кадмия, сурьмы, меди, мышьяка, цинка, никеля, хрома, титана, магния, кремния, железа и алюминия возможен по методике, описанной в работах [307—309]. По указанной методике пробу превращают в вольфрамовый ангидрид прокаливанием на воздухе при 600— 650° С (примеси при этом не теряются). Эталоны готовят синтетически на основе чистого вольфрамового ангидрида и окислов примесей. Пробы и эталонные образцы смешивают с угольным порошком в соотношении 4 1. В угольный порошок предварительно вводят носитель, — веихество, улучшающее отгонку примесей [106, 170]. Наиболее доступными носителями являются ио-дистый калий (вводится 5% от веса угольного порошка) и фтористый натрий (1%). Смесью в количестве 100 мг набивают угольные электроды специальной формы (см. гл. П, рис. 3). В качестве источника возбуждения можно применять дугу постоянного или переменного тока. В последнем случае чувствительность определений хрома, никеля, меди, алюминия, магния, железа и кремния примерно на порядок ниже, однако во многих случаях она достаточна. Питание постоянным и переменным током поджиг дуги постоянного тока осуществляются по схеме, приведенной на рис. 9. При использовании дуги постоянного тока проба включается анодом (межэлектродный промежуток 3 мм). [c.122]

    Для контроля качества чистого продукта или его смеси были рекомендованы два объемных метода. Первый основан на титровании 0,5 М раствором хлорида кальция в присутствии оксалата аммония в качестве индикатора [130], по второму методу применяется 0,1 М раствор хлорида магния и эриохром черный Т. В первом методе к 100 мл анализируемого раствора прибавляют 10жл 5%-ного раствора оксалата аммония и титруют при комнатной температуре 0,5 М раствором хлорида кальция до появления заметного помутнения. Второй метод аналогичен комплексометрическому определению магния [134] (стр. 56). Из колориметрических методов применяется колориметрическое определение меди [130] или никеля [131], связанных в комплекс комплексоном. [c.170]

    Разработаны методы фотометрического определения при помощи некоторых изучавшихся реагентов магния, никеля и молибдена в чистых растворах, а ванадпя в сталях. [c.111]

    Экстракция при помощи оксина была использована для определения магния в кальциевых минералах, aлюJMИниeвыx [345] и циркониевых сплавах [1070] (мешающие элементы удаляли предварительной экстракцией при более низких значениях pH и (или) маскировали цианидами), в электролитическом никеле [584, 587], уране [47], биологических образцах (в присутствии цианидов и тартратов как маскирующих агентов) [1615] и других материалах [1366], а также для отделения магния от щелочных металлов [1595]. [c.131]


Смотреть страницы где упоминается термин Определение магния никеле: [c.329]    [c.84]    [c.195]    [c.40]    [c.140]    [c.191]    [c.191]    [c.352]    [c.218]    [c.189]    [c.388]   
Аналитическая химия магния (1973) -- [ c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Магний определение

Никель определение



© 2025 chem21.info Реклама на сайте