Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетокислот эфиры

    Какое строение будет иметь кетокислота, эфир которой [c.120]

    Особенность действия ионов металлов как катализаторов кислотных реакций состоит в том, что активные промежуточные продукты в этом случае являются комплексными соединениями, которые образуются при двухцентровом взаимодействии иона с субстратом путем построения соответствующего хелата. Далеко не все субстраты, способные к превращениям по механизму кислотного катализа, могут образовать с ионами металла хелатные соединения этим и объясняется сравнительная редкость рассматриваемых процессов. Если субстрат обладает подходящим строением, многие ионы металлов оказываются весьма эффективными кислотными катализаторами. Необходимыми свойствами обладают некоторые кетокислоты, эфиры и амиды дикарбоновых кислот, аминокислоты, эфиры аминокислот и им аналогичные соединения. Их превращения ускоряются в присутствии ионов меди, железа или никеля, которые в некоторых случаях оказались даже активнее ионов водорода [18]. Как для всякого кислотного катализа, здесь также необходимо присутствие подходящего [c.17]


    На первом этапе кроме циклогексанола и циклогексанона образуется много других соединений спиртов, альдегидов, кетонов и кислот с меньшим, чем в сырье, числом атомов углерода окси- и кетокислот, сложных, простых эфиров и продуктов поликонденсации карбонильных производных. Содержание их в продуктах реакций может сильно изменяться при сравнительно небольших изменениях [c.159]

    Экстрактивную перегонку используют не только для разделения бинарных смесей, ее применяют также для выделения отдельных компонентов из многокомпонентных смесей, например бензола из нефтяных фракций [72]. Смеси насыщенных и ненасыщенных углеводородов с почти одинаковыми температурами кипения разделяются экстрактивной ректификацией в присутствии эфиров кетокислоты [73 ]. В последнее время большое значение приобретает разделение низших углеводородов i—Сз [74]. Кар-нер с сотр. [75] исследовал эффективность разделения смеси метилциклогексан—толуол в насадочных колоннах при экстрактивной ректификации с добавлением фурфурола на основании полученных данных были выведены уравнения для расчета процесса ректификации. [c.318]

    В Германии твердый парафин окисляли в больших масштабах. Процесс окисления, продолжавшийся 15—30 час., проводили в алюминиевых реакторах при 130° (110—140°) и 10 ama в присутствии приблизительно 0,1% перманганата в качестве катализатора [15], Чтобы получить кислоты с нужным молекулярным весом, окислению подвергали парафины с 20—30 атомами углерода. Отходящие газы, содержавшие 10—15% кислорода, увлекали с собой все кислоты с 1—5 атомами углерода и часть кислот с 6—8 атомами эти газы промывали водой и из водного раствора выделяли кислоты. Нелетучие продукты окисления состояли из смеси неизменного парафина, спиртов, кетонов, кислот, окси- и кетокислот, высокомолекулярных сложных эфиров и лактонов. При омылении щелочью под давлением при 150—170° эфиры и лактоны гидролизовались в результате такой обработки получалось два слоя. [c.74]

    Для получения гомологов пиридина имеется много синтетических методов. Особенно плодотворным оказался способ, основанный на конденсации 2 молекул эфира -кетокислоты с 1 молекулой альдегида [c.1016]

    Один из методов получения пиримидинов основан на конденсации амидинов с 3-дикетонами нли эфирами 3-кетокислот  [c.1033]

    Сложноэфирная конденсация. Сложноэфирной конденсацией называют взаимодействие двух одинаковых или различных молекул сложных эфиров, приводящее к образованию эфира а-кетокислот. Конденсация протекает в присутствии основных катализаторов. Из конденсирующих агентов наиболее часто применяются алкоголят натрия, спиртовый остаток которого, как правило, тот же, что и спиртовый остаток в молекуле сложного эфира. [c.183]


    Кетокислоты, кетоальдегиды и сложные эфиры (см. Дикарбонильные соединения) Кетоны (см. также Дикарбонильные соединения, Ненасыщенные карбонильные соединения и т. п.) [c.431]

    Декарбоксилирование Р-кетокислот илн сложных эфиров 12-40. Расщепление третичных алкоголятов [c.431]

    Все эти объяснения, хотя бы в общей форме, отвечают на вопрос почему, но не объясняют как проходит асимметрический синтез. Современное понимание механизма асимметрических синтезов целиком основано на конформационных представлениях. Принцип такого подхода указал в начале 50-х годов Прелог [94] на примере асимметрических синтезов, протекающих при взаимодействии магнийорганических соединений с эфирами а-кетокислот с оптически активными спиртами. [c.125]

    Получение из эфиров я-кетокислот. Эфиры -кетокислот (LXXVII) также реагируют с эфирами тиодиуксусной кислоты (LXVII), в результате чего образуются эфиры З-окситиофеп- [c.369]

    Не все субстраты, способные к превращению по механизму кислотного катализа, могут давать с ионами металлов хелатные соединения. Необходимыми свойствами обладают некоторые кетокислоты, эфиры амиды декарбоновых кислот, аминокислоты, эфиры аминокислот. Их превращения ускоряются в присутствии ионов меди, железа, никеля. [c.140]

    В отличие от кетокислот эфиры альдегидокислот использованы пока в реакции Реформатского лищь в отдельных работах. Так. этил-4-оксобутират описан в реакции с этилбромацетатом [373.  [c.131]

    В настоящее время основным сырьем для производства высших жирных спиртов методом каталитической гидрогенизации служат метиловые и бутиловые эфиры кислот С,— is- Их получают этерификацией соответствующих фракций синтетических жирных кислот (продуктов окисления парафина) или переэтери-фикацией природных жиров (триглицеридов). Сами же природные жиры применяются как сырье для гидрогенизации в относительно небольших масштабах. Переработка свободных жирных кислот, начавшаяся в последние годы, имеет тенденцию к расширению. В табл. 1.8 приведены характеристики и составы кислот, получаемых из различных видов сырья, используемого в промышленных процессах гидрогенизации. Жирные кислоты природных жиров представлены насыщенными и ненасыщенными кислотами с прямой цепью, содержащими четное число углеродных атомов в молекуле. Состав фракций синтетических жирных кислот более сложен. В них присутствуют насыщенные монокарбоновые кислоты с четным и нечетным числом углеродных атомов-как с нормальной, так и с разветвленной цепью, а также дикарбоновые, ненасыщенные и нафтеновые кислоты, кетокислоты и оксикислоты. По другим данным, в промышленных фракциях кислот С]о— ia содержится [в % (масс.)] кислот с разветвленной цепью — 30—35 днкарбоновых кислот— 1,5—4 окснкислот и лактонов— 1—2 неомы-ляемых веществ — до 3. [c.28]

    Жнры, как известно, представляют собой сложные эфиры глицерина и разнообразных кислот жирного ряда. Среди последних встречаются предельные и непредельные кислоты, гидрокси- и кетокислоты с длиной цепи С12—С20 и различной степенью непре-дельности. Практически все жирные кислоты животных и растительных жиров построены на основе неразветвленной алифатической цепи. Очень небольшие количества отдельных представителей оазветвлеииых кислот ряда Сд и Сга были выделены из бактерий и жировых тканей животного прои( хождения. Из некоторых микроорганизмов и грибов выделены высокомолекулярные (З-гидр-оксикислоты с длинной боковой цепью в -положении. [c.31]

    В первой стадии переочистки концентрация указанных компонентов масла уже недостаточна. Вследствие этого вновь возрастают кислотность и число омыления окисленного масла, хотя при этом и образуется лишь небольшое количество асфальтового осадка. При дальнейшем увеличении расхода кислоты достигается вторая стадия переочистки, характеризуюш,аяся особенно резким увеличением числа омыления, т. е. количеством в масле связанных кислот (эфиров и т. п.). Свободная кислотность масла при этом остается минимальной. Наконец, когда концентрация ароматических и смол становится совершенно недостаточной для торможения окисления нафтенов, наступает третья стадия переочистки, характеризующаяся резким возрастанием не только числа омыления, но и кислотного числа. Причем снова имеет место образование низкомолекулярных кислот. Наряду с этим в окисленном масле появляются оксикислоты (кетокислоты) — неизменная составная часть продуктов окисления нафтенов. [c.370]

    Далее проводят доомыление циклических сложных эфиров (лак-тонов) и разложение кетокислот и кетонов сначала в автоклаве при [c.53]

    При таком понимании механизма реакции синтез Скраупа можно считать частным случаем синтеза Дёбнера — Миллера. Вполне понятно, что последний применим только для получения гомологов хинолина, но не самого хинолина. Сходным методом является синтез гомологов хинолина по Конраду — Лимпаху путем конденсации первичных ароматических ЗМГ1Н0В с эфирами р-кетокислот (например, ацетоуксуспым эфиром). [c.1021]


    Механизм реакции Кляйк на напоминает как реакции альдольного присоединения, так и нуклеофильные реакции производных кислот. Первая стадия ( ) представляет собой образование аниона этилацетата, который, являясь чрезвычайно сильным нуклеофилом, атакует карбонильный атом углерода второй молекулы сложного эфира (2). Элиминирование этилат-нона приводит далее к эфиру р-кетокислоты, этилацетоацетату (3). [c.232]

    ДИЭТИЛМАЛОНАТ (диэтиловый эфир малоновой кислоты, малоновый эфир) С2Н5ООССН2СООС2Н5 — бесцветная маслянистая жидкость с приятным фруктовым запахом, т. кип. 198,9° С практически нерастворим в воде, со спиртом и эфиром смешивается во всех отношениях. Д.— очень реакционноспособное вещество, легко образует металлопроизводные, используемые для синтеза высших алифатических или жирноароматических кислот, кетокислот, кетонов и др., с мочевиной Д. и его алкнлпроиз-водные образуют барбитуровую кислоту и ее 5-алкилзамещенные, многие из которых являются снотворными средствами. В промышленности Д. получают [c.91]

    ПИРОВИНОГРАДНАЯ КИСЛОТА СН3СОСООН — бесцветная жидкость с запахом уксусной кислоты, т. пл. 13,6° С смешивается с водой, спиртом, эфиром во всех отношениях. П. к. проявляет общие свойства а-кетокислот, играет важную роль в процессах обмена веществ, служит переходным веществом в биосинтезе белков из углеводов и наоборот. П. к. содержится во всех тканях организма. Увеличение количества П. к. в организме вызывает авитаминоз Вх и ряд других заболеваний. [c.191]

    Для эфиров 6-кетокислот свойственны кислотное (а) и кетон1юе (б) расщепления  [c.150]

    Декарбонилирование сложных эфиров и карбоновых кислот— довольно специфическая реакция. Таким образом можно декарбонилировать только некоторые кислоты муравьиную, щавелевую, триарилуксусную, а-гидрокси- и а-кетокислоты. Больщинство, но не все а-кетоэфиры можно декарбонилировать простым нагреванием. О механизмах этих реакций известно немного (см., например, [469]). Эти реакции включены в настоящую главу, так как, по крайней мере в некоторых случаях, был продемонстрирован механизм нуклеофильного замещения [470]. [c.119]

    Протонированные азотсодержащие гетероциклы подвергаются карбалкоксилированию [292] под действием радикалов OOR, образующихся из сложных эфиров а-кетокислот  [c.101]

    Карбоновые кислоты декарбоксилируются [211] под действием тетраацетата свинца, давая разнообразные продукты, включая сложные эфиры типа ROA (образующиеся при замещении СООН на ацетокси-группу), алканы RH (см. т. 2, реакцию 12-39) И, если субстрат содержит 3-атом водорода, алкены, получающиеся в результате элиминирования Н и СООН, а также ряд других продуктов, являющихся результатом перегруппировок, внутримолекулярных циклизаций [212] и взаимодействия с молекулами растворителя. Если R — третичная группа, основным продуктом обычно является алкен, который часто образуется с хорошим выходом. Высокие выходы алкенов достигаются также в случае первичных или вторичных групп R, но для этой цели вместо тетраацетата свинца используют систему u(0A )2 — РЬ(0Ас)4 [213]. В отсутствие ацетата меди неразветвленные кислоты дают в основном алканы (хотя выходы, как правило, низки), а кислоты, имеющие разветвление в а-положении, могут давать сложные эфиры или алкены. Сложные эфиры с хорошими выходами получены из некоторых разветвленных кислот, из р,у-ненасыщенных кислот, а также из кислот, где R = бензильная группа. у-Кетокислоты с хорошими выходами приводят к а,р-ненасыщенным кетонам [214]. В окислительном декарбоксилировании использовались и другие окислители, включая соединения Со(П1), Ag(II), Mn(III) и Се (IV) [215]. [c.289]

    Каталитическое гидрирование непредельных кислот в виде эфиров с оптически активными спиртами истолковывается Прелогом на основе модели, родственной предложенной для асимметрических синтезов при участии эфиров сс-кетокислот (см. стр. 123). Так, например, эфир р-метилкоричной кислоты с оптически активным метил-ос-нафтилкарбинолом закрепляется на поверхности катализатора в конформации, обеспечивающей плоское расположение всех групп, кроме двух заместителей у асимметрического центра. С катализатором сближается при этом сторона, на которой расположен меньший заместитель с этой же стороны присоединяется и переходящий с катализатора водород  [c.139]

    Кетокислоты и Hi эфиры ( , р [430], у [431], в [432] и др.). Восстановление-а-кетокисаот [430] обычно приводит лишь к переводу группировки — СО—СООН в — СН(ОН)—СООН. [c.79]

    Эфиры сс-кетокислот лучше всего опыляются водными щелочами плп спиртовым расч вором К СОа спиртовые растворы едких щелочей часто вызывают разложе-нпо [62]. [c.367]


Смотреть страницы где упоминается термин Кетокислот эфиры: [c.419]    [c.670]    [c.670]    [c.444]    [c.176]    [c.176]    [c.137]    [c.475]    [c.184]    [c.19]    [c.237]    [c.394]    [c.39]    [c.504]    [c.47]    [c.59]   
Реагенты для органического синтеза Том 7 (1974) -- [ c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Кетокислоты



© 2025 chem21.info Реклама на сайте