Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрогенизация промышленные процессы

    Первой работой, в которой превращения простого эфира изучались в условиях, моделирующих промышленный процесс, было сообщение В этой работе изучалось влияние анизола на гидрогенизацию ароматических углеводородов и показано, что анизол менее стабилен, чем фенол, образование которого в гидрогенизатах доходило до 63%. [c.185]

    Тепловой эффект гидрогенизации бутенов и гексенов соответственно составляет 570 и 350 ккал на 1 кг и для бензола и нафталина (полная гидрогенизация) соответственно 660 и 550 ккал. Высокомолекулярные производные бензола и нафталина и высокомолекулярные олефины, конечно, имеют более низкие значения теплового эффекта. Следует помнить, что гидрогенизация ароматических углеводородов в промышленных процессах проходит лишь частично и, кроме того, она сопровождается реакциями разложения, поглощающими тепло. Согласно вычислениям, основанным на действительных результатах [c.219]


    Реакции между газообразными веществами на поверхности твердых катализаторов весьма часто применяются при осуществлении промышленных процессов (синтез метилового спирта, реакции гидрогенизации и дегидрогенизации углеводородов, синтез и окисление аммиака и т. д.). Кинетика таких каталитических реакций существенно изменяется по сравнению с кинетикой в отсутствие катализатора. В некоторых случаях увеличение парциального давления одного из реагирующих газов приводит вместо ускорения реакции к ее замедлению. В других случаях замедление реакций происходит вследствие увеличения количества одного из продуктов реакции. В гетерогенных газовых реакциях часто наблюдается дробный порядок реакций. [c.409]

    Характерно, что в странах, богатых нефтью (Советский Союз и США), несмотря на большой объем исследований по деструктивной гидрогенизации промышленный процесс в его первых модификациях не получил широкого внедрения из-за исключительно неблагоприятных экономических показателей. [c.233]

    В настоящее время высокие давления нашли широкое применение в различных химических и смежных с ними производствах (синтез аммиака, метилового спирта и мочевины, гидрогенизация угля и тяжелых нефтяных остатков, гидратация олефинов, многочисленные полимеризационные процессы, получение карбонилов некоторых металлов, гидротермальный синтез кварца и др.). Осуществление в промышленности процессов под давлением порядка сотен атмосфер стало обычным явлением. Оно, в свою очередь, обусловило проведение широкого круга научных исследований для выяснения основных термодинамических и кинетических параметров промышленных процессов при высоких давлениях (данные Р — V — Г, химические и фазовые равновесия, явления переноса, влияние давления на скорость и направление реакций и т. п.). [c.5]

    Во втором периоде были созданы промышленные процессы получения искусственного жидкого топлива путем гидрогенизации углей и смол Основной процесс превращения углей или тяжелых [c.8]

    Поскольку все превращения азотсодержащих соединений начинаются с гидрирования, целесообразно начать рассмотрение химии деструктивной гидрогенизации этих соединений с динамики изменения их состава в промышленном процессе. Уже при сопоставлении [c.209]


    Промышленные процессы гидрогенизации, используемые для производства высших жирных спиртов [c.27]

    Известны промышленные процессы изомеризации на хлористом алюминии в его присутствии можно осуществлять реакцию при низких температурах — от 50 до 150° С. Поскольку процессы подробно описаны [8, 75], далее они не рассматриваются. Весьма активно влияют на реакцию изомеризации катализаторы гидрогенизации и дегидрирования (сульфид вольфрама, окись молибдена, платина и др.) [76—79]. В промыщленности широко применяют платиновые и палладиевые катализаторы на кислых носителях — синтетических алюмосиликатах и фторированной окиси алюминия [7, 78, 80]. Эти катализаторы активны при 370—480° С. Несмотря на менее благоприятные термодинамические условия проведения реакции, чем при использовании хлористого алюминия, над платиновыми катализаторами также удается достичь глубокой изомеризации легких углеводородов. Так, степень изомеризации н-пентана за один проход может достигать 50—60%  [c.330]

    В. Н. Ипатьевым (Россия). Первые промышленные установки деструктивной гидрогенизации угля и смолы полукоксования углей были введены в эксплуатацию в 1927 г. в Германии, не обладавшей нефтяными ресурсами и развившей впоследствии свою топливную промышленность на базе твердых горючих ископаемых. Значительные работы в области гидрогенизации углей были проведены в Германии Ф. Бергиусом, поэтому промышленный процесс некаталитической гидрогенизации угля иногда носит название бергинизации. Несколько позднее установки деструктивной гидрогенизации были сооружены в Англии. Характерно, что в странах, богатых нефтью,— в Советском Союзе и США, несмотря на большой объем исследований, осуществленных в области деструктивной гидрогенизации, промышленного внедрения процесс практически не получил вследствие исключительно неблагоприятных экономических показателей. [c.263]

    Основными промышленными процессами гидрирования ароматических углеводородов являются процессы гидрогенизации бензола в циклогексан и нафталина в тетралин или декалин. [c.213]

    Промышленный процесс каталитической гидрогенизации состоит из четырех основных стадии  [c.92]

    В промышленности процесс деструктивной гидрогенизации проводится в несколько стадий. Первой стадией гидрогенизации угля является его подготовка—сушка, размол, замешивание с циркуляционным (затирочным) маслом до получения пасты, легко перекачиваемой специальными насосами, и смешение с катализатором. Далее для угольной пасты (и для тяжелых нефтяных остатков) следует первая ступень гидрогенизации в жидкой [c.117]

    Как будет видно дальше, более или менее селективная гидрогенизация и удаление сернистых и асфальтовых соединений возможны в промышленных процессах гидрогенизации при умеренных температурах. [c.216]

    Хромовые стали устойчивы к воздействию водорода, устойчивость их возрастает с повышением содержания хрома в стали. 3% хромовая сталь может применяться до температур 400—450° С, 6% хромовая сталь — до 550° С, при давлениях, имеющихся в промышленных процессах гидрогенизации. Добавление вольфрама, молибдена и ванадия дает дальнейшее улучшение в устойчивости сталей к воздействию водорода. Низкоуглеродистые стали, содержащие 6% хрома и 0,5% молибдена, могут успешно применяться при гидрогенизации. Интересно, что хромовые стали противостоят воздействию водорода при содержании углерода не выше 0,5%. [c.223]

    Поскольку крекинг полициклических ароматических соединений протекает значительно труднее и сопровождается весьма значительным образованием кокса, в то время как моноциклические углеводороды образуют ценные ароматические компоненты бензина, гидрогенизация сырья, направляемого на каталитический крекинг, улучшает выход целевых продуктов крекинга. Кроме того, гидрогенизацией удаляются металлические примеси, содержащиеся в сырье и быстро снижающие активность катализаторов крекинга. При промышленном процессе гидрогенизации накопление металлов на гидрирующих катализаторах не снижает их активности. [c.125]

    Схема трехступенчатой гидрогенизации (высокотемпературной гидрогенизации) получила наибольшее распространение в промышленности, так как, во-первых, эта схема была разработана еще в самом начальном периоде создания процесса гидрогенизации и, во-вторых, по этой схеме можно перерабатывать сырье любого химического состава с выпуском различного ассортимента конечной продукции. По этой схеме, аналогичной схеме гидрогенизации угля, процесс осуществляется в три ступени первая — жидкофазная гидрогенизация, вторая — предварительное гидрирование и третья — расщепление или бензинирование (фиг. 38). [c.235]

    Промышленные процессы гидрогенизации [c.609]

    Гидрогенизация этилена температура 0° (промышленный процесс) [c.238]

    Гидрогенизация бензойной или фталевой кислоты в бензальдегид в присутствии водорода (промышленный процесс) Железо -Ь церий (кобальт) 1008 [c.267]


    Каталитическая гидрогенизация нитробензола (промышленный процесс) [c.273]

Таблица 390 Каталитическая гидрогенизация нафталина (промышленный процесс) Таблица 390 <a href="/info/1589574">Каталитическая гидрогенизация нафталина</a> (промышленный процесс)
    Каталитическая гидрогенизация угля (промышленный процесс)  [c.310]

    Хотя полимеризация газообразных олефинов в жидкие углеводороды была известна еще 80 лет назад, практический интерес к этому вопросу возник лишь в течение последних 30 лет. Интенсивное научное исследование привело к разработке нескольких промышленных процессов каталитической полимеризации газообразных олефинов нормального строения в ценные жидкие углеводороды, используемые в качестве моторного топлива и для производства авиационного бензина. Последний получается комбинированием процессов полимеризации и гидрогенизации, а также алкилированием изобутана предварительно полученными полимерами. Так, например, во время второй мировой войны комбинированием полимеризации с гидриррванием или алкилированием получали октаны с разветвленными цепями, которые были важными компонентами некоторых сортов высокооктановых авиационных бензинов. [c.186]

    В настоящее время основным сырьем для производства высших жирных спиртов методом каталитической гидрогенизации служат метиловые и бутиловые эфиры кислот С,— is- Их получают этерификацией соответствующих фракций синтетических жирных кислот (продуктов окисления парафина) или переэтери-фикацией природных жиров (триглицеридов). Сами же природные жиры применяются как сырье для гидрогенизации в относительно небольших масштабах. Переработка свободных жирных кислот, начавшаяся в последние годы, имеет тенденцию к расширению. В табл. 1.8 приведены характеристики и составы кислот, получаемых из различных видов сырья, используемого в промышленных процессах гидрогенизации. Жирные кислоты природных жиров представлены насыщенными и ненасыщенными кислотами с прямой цепью, содержащими четное число углеродных атомов в молекуле. Состав фракций синтетических жирных кислот более сложен. В них присутствуют насыщенные монокарбоновые кислоты с четным и нечетным числом углеродных атомов-как с нормальной, так и с разветвленной цепью, а также дикарбоновые, ненасыщенные и нафтеновые кислоты, кетокислоты и оксикислоты. По другим данным, в промышленных фракциях кислот С]о— ia содержится [в % (масс.)] кислот с разветвленной цепью — 30—35 днкарбоновых кислот— 1,5—4 окснкислот и лактонов— 1—2 неомы-ляемых веществ — до 3. [c.28]

    Технологические схемы других промышленных процессов переработки кислот, эфиров и триглицеридов на стационарных катализаторах (ыедно-хро-мовых, цинко-хромовых, медно-цинковых) аналогичны рассмотренной. В промышленных процессах гидрогенизации выход спиртов значительно ниже теоретического, а продукт содержит примеси исходных и побочных веществ. Кроме того, уже в исходном сырье, особенно в синтетических жирных кислотах, имеются [c.35]

    Наиболее интенсивно промышленный процесс гидрокрекинга (деструктивной гидрогенизации) развивался в предвоенные и военные годы в Германии. В 1927— 1942 гг. были разработаны катализаторы гидрогенизации (главным образом на основе сульфида вольфрама) для гидрирования в паровой фазе продуктов переработки углей, смол и нефти. Катализатор № 5058 — сернистый вольфрам обладает высокой гидрирующей активностью № 6434 — сернистый вольфрам на активированной природной глине характеризуется повышенными расщепляющими свойствами № 8376 — сернистый ни-кельвольфрамовый на окиси алюминия отличается высокими гидрирующими функциями и малой расщепляющей активностью другой сернистый никельвольфрамо-вый катализатор — № 3076 — имеет весьма высокую гидрирующую активность при переработке сырья с большим содержанием ароматических углеводородов. Сульфидные катализаторы стабильны длительное время при давлении 250—300 ат, после снижения активности их заменяют. [c.77]

    В конце 20-х годов в Германии, не обладавшей нефтяными ресурсами, стали внедрять промышленный процесс деструктивной гидрогенизации твердых горючих ископаемых — бурого и каменного угля и сколы полукокссвания этих углей. Процесс широко использовался в Германии во время второй мироной войны, несмотря на его дороговизну, обусловленную большим расходом водорода и чрезвычайно высоким давлением в аппаратуре (2С0 —7С0 от). В послевоенные годы деструктивная гидрогенизация практически не нашла применения вследствие низких технико-экономических показателей процесса применительно к твердсму сырью и тяжелым нефтяным остаткам. [c.18]

    Не менее важны и другие способы усовершенствования дальнейшее повышение активности и прочности катализатора снижение его абразивности и потерь уменьшение выхода двуокиси серы разработка процессов каталитического крекинга сырой нефти или от-бензиненных остатков. Будут совершенствоваться и новые, уже внедренные в промышленность процессы, например ступенчато-противоточный каталитический крекинг [65]. Не исключено применение комбинированного процесса легкого каталитического крекинга остатка с последующей гидрогенизацией получаемых продуктов. Очевидно, предстоит создать и новые процессы деметаллизации катализаторов. Наряду с этим будет совершенствоваться оборудование, применяемое в процессах каталитического крекинга. Большее внимание должно быть уделено оборудованию реакторов (в том числе, лифт-реактора) и регенераторов (в том числе с дожигом СО). [c.110]

    В конце 20-х годов в Германии, ие обладавшей нефтяными ресурсами, стали внедрять промышленный процесс деструктивной гидрогенизации твердых горючих ископаемых — бумго и каменного угля — и смолы, получаемой при полукоксовании этих углей. Процесс широко использовали во время II мировой войны несмотря на его дороговизну, обусловленную большим расходом водорода и чрезвычайно высоким давлением (30—70 МПа). [c.16]

    При гидрогенизации или гидроочистке нефтей и нефтяных фракций протекают разнообразные реакции, в которых участвуют все компоненты, содержаш иеся в исходной сложной смеси. На схеме приведены типичные реакции углеводородных компонентов, содержащихся в прямогоппых или крекинг-фракциях, протекающие при некоторых промышленных процессах гидрирования. [c.126]

    Важный промышленный процесс — каталитическое гидриро-ание (гидрогенизация) относительно дешевых ненасыщенных астительных масел. В этом случае водород насыщает двойные вязи и жидкие масла превращаются в твердые жиры. Процесс ротекает при температуре 160—200°С, давлении 2—15 атм в рисутствии никелевых или платиновых катализаторов. [c.469]

    Термин активность начали применять при обсуждении результатов некоторых исследований простых контрольных реакций и промышленных процессов. Например, сообщается, что комбинация металлов подгруппы 1Б с группой УП1 увеличивает тидрогенизационную активность. Так, никель — медь [13] и рутений — медь [26] обеспечивают более высокие скорости дегидрогенизации циклогексана, чем чистые металлы. Однако некоторые исследователи подчеркивают, что это происходит не из-за более высокой внутренней активности биметаллического катализатора, а за счет меньшего загрязнения углеродом биметаллической поверхности по сравнению с чистыми металлами [50]. В определенных системах, где металлы обладают очень высокой гидрогенизационной активностью, могут действовать оба фактора. Аналогичные промотирующие эффекты указаны для реакций гидрогенизации олефинов с использованием систем палладий— золото [7] и никель — медь [51, 52]. [c.24]

    Процесс гидрогенизации нефтяных продуктов тесно связан с крекингом. Температуры, применяемые в промышленном процессе гидрогенизации, от 400 до 560° С, частично совпадают с температурами, применяемыми при смешанофазном процессе крекинга. Глубина реакций крекинга при этих условиях гидрогенизации зависит, главным образом, от температуры процесса. [c.196]

    Применение высоких температур в современных процессах гидрогенизации нефтяных продуктов делает желательным применение высоких давлений водорода. Следует помнить, что изменение свободной энергии zlF° реакции гидрогенизации непредельных и ароматических углеводородов положительно при температурах выше 500° С для олефинов и выше 300° С для ароматики. Согласно уравнению (28) только применением высоких давлений водорода можно сделать значение изменения свободной энергии отрицательным при высоких температурах. Давление, применяемое в промышленных процессах гидрогенизации, обыкновенно 200 а/п. Скорость гидрогенизации некоторых сортов угля и асфальтов может быть сравнительно низкой при давлениях от 200 до 300 а/п. Для этих продуктов в промышленных процессах применяются давления порядка 700 а/п при 500° С, реакция проводится в больших масштабах в реакционных камерах производительностью до 10 [22], [c.196]

    Промышленный процесс гидрогенизации может проводиться при более низких или более высоких температурах, чем указано выше. В умереннотемпературном процессе применяют температуру около 400° С и малое время реакции. При этих условиях и при высоком давлении водорода преобладают реакции гидрогенизации, реакции крекинга имеют место в сравнительно небольшой степени. Этот процесс недеструктивной гидрогенизации может применяться для изменения свойств нефтяных продуктов. [c.197]

    Турбулентность потока гетерогенной смеси водорода и перерабатываемого сырья может играть важную роль при гидрогенизации. Морган и и Вериард [17] проводили гидрогенизацию смол в трубчатке в условиях ламинарного и турбулентного потоков. При одинаковых условиях выход бензина зависит от характера потока в трубчатой системе. Выход бензина из низкотемпературной смолы был увеличен вдвое изменением нетурбулентного потока (число Рейнольдса 1000) на турбулентный (число Рейнольдса 5600). Кроме того, увеличение степени турбулентности или числа Рейнольдса от 5500 до 11 ООО увеличивало выход бензина вдвое. Низкотемпературная смола гидро-генизовалась в условиях турбулентного потока без катализатора. Эти опыты, повидимому, имеют большое значение для дальнейшего развития промышленного процесса гидрогенизации. В настоящее время процесс гидрогенизации проводится в реакционных камерах в условиях ламинарного движения. [c.197]

    Процесс гидрогенизации нефтяных продуктов при высоком давлении и температуре может [проводиться некаталитически. Однако применение катализаторов очень сильно увеличивает скорость гидрогенизации. Катализаторы применяются во всех промышленных процессах. Основные патенты на эти процессы были взяты Краух и Пиер [ам. пат. 1890434 и 1890436 (1932)]. [c.198]

    Бергиус положил начало промышленному развитию гидрогенизации. В процессе Бергиуса для удаления серы применялась окись железа. В действительности окись железа и образовавшиеся в процессе сульфиды действовали как катализаторы, но каталитическая активность этих соединений была очень низкой. Дальнейшее развитие катализа в промышленной гидрогенизации угля и нефтяных продуктов связано, главным образом, с исследованиями 1. G. Farbenindustrie. Были найдены и внедрены в промышленную практику сероустойчйвые и стабильные в работе катализаторы. [c.198]

    Деструктивная гидрогенизация таких дестиллатных продуктов, как гайзоли и парафинистые дестиллаты, может проводиться в отсутствии катализаторов. Это зависит от химического состава этих дестиллатов, содержащих относительно малые количества высоко-полицикличной ароматики и асфальтовых веществ, которые быстро конденсируются с образованием кокса. Тем не менее в промышленных процессах деструктивной гидрогенизации дестиллатных масел всегда применяются катализаторы. В присутствии катализаторов выходы бензина выше и газообразование меньше вследствие менее жестких температурных условий. С другой стороны, при каталитическом процессе могут применяться более низкие давления. [c.219]

    В отличие от процессов газификации и термической переработки деструктивная гидрогенизация является процессом прямого ожижения угля в синтетическое жидкое топливо и сырье для химической промышленности. В процессах термической переработки угля также получаются жидкие продукты, но их образуется значительно меньше, чем в условиях гидрогенизации,, и представлены они трудно перерабатываемыми смолами. Поскольку органическая масса угля является нерегулярным полимером в условиях высоких температур и давлений, она деполи-меризуется с образованием большого числа разнообразных по структуре и свойствам фрагментов, которые помимо превращения в целевые продукты могут стать источниками образования нежелательных побочных соединений. [c.188]

    Каталитическая гидрогенизация применяется в промышленном масштабе. Один из примеров промышленного применения процесса гидрогенизации — это гидрогенизация жиров. Процесс получения над платиновым катализатором твердых жирев из жидких масел известен со времени работ Дебуса (1863) и де Вильда (1874) впервые он применен в промышленности Сабатье и Сендере-ном (1897) и Норманом (1902) с никелевым катализатором. Выпуск гидрогени-зованных жиров достигает значительных масштабов вследствие широкого применения их в производстве мыла, свечей и пищевых жиров и небольшого количества водорода, необходимого для этого процесса. Гидроароматические производные фенола, крезолов и нафталина, а также ментол из тимола получают в промышленном масштабе. Гидрогенизация находит наибольшее применение в нефтяной промышленности она употребляется для 1) производства авиа-1Д10НН0Г0 топлива с высокими антидетонационными свойствами и с высокой температурой вспышки 2) стабилизации бензинов 3) обессеривания бедных смолами высокосернистых дестиллатов 4) превращения тяжелых асфальтовых нефтей и остатков от переработки нефти в бензин и дестиллаты, не содержащие асфальта и имеющие низкое содержание серы 5) улучшения качества низкосортных смазочных масел 6) производства из низкосортных дестиллатов дизельных топлив с высоким дизельным индексом, низким содержанием серы и хорошим цветом 7) производства керосинов с повышенными осветительными качествами, а также нафт с высокой растворяющей способностью. [c.609]

    История современной каталитической гидрогенизации начинается лишь с работ Сабатье, Ипатьева и Зелинского. Сабатье в 1897 г. положил начало парофазной гидрогенизации ненасыщенных соединений над никелем с тех пор и до настоящего времени исследования каталитических явлений, происходящих на никеле, представляют собою одно из самых боевых направлений научной работы в области катализа. Ипатьев в 1902—1904 гг. ввел в технику гидрогенизации высокие давления, эффективность применения которых стала очевидной. Теперь на применении высоких давлений основано подавляющее большинство промышленных процессов гидрогенизации, но исследования в направлении совершенствования каталитической гидрогенизации под высоким давлением не прекращаются и поныне. [c.115]

    Однако оказалось, что степень гидрогенизации зависит от химического строения соединения и алкен может остаться индифферентным и не участвовать в реакции, хотя тот или иной изомер его легко подвергнется гидрогенизадии. Это открытие имело большое практическое значение не только для промышленных процессов синтеза изоалканов, но и для теоретической химии. Начало работ, связывающих процессы гидрогенизации этиленовых соединений с их химическим строением, было положено французским химиком Вавоном и советским химиком Лебедевым и их учениками. Дальнейшее развитие это направление работ получило в исследованиях Казанского и Залькинда и их учеников. [c.127]


Смотреть страницы где упоминается термин Гидрогенизация промышленные процессы: [c.122]    [c.256]    [c.76]    [c.92]    [c.204]    [c.276]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.609 ]




ПОИСК





Смотрите так же термины и статьи:

Промышленные процессы



© 2024 chem21.info Реклама на сайте