Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амиды титрование

    Обращает на себя внимание тот факт, что некоторые реакции практически не применяются при титровании. К таким реакциям относятся реакции омыления, этерификации, сульфирования, нитрования (два примера приведены в Части 2), замещения галогенов (оба описанных случая представляют собой замещение хлора, связанного с атомами кремния, при действии анилина и тиоцианата), образования амидов (титрование уксусного ангидрида и различных хлорангидридов аминами), а также реакция гидролиза (уксусный ангидрид был оттитрован водой и щавелевой кислотой). [c.66]


    Титрование кислот (разд. 3.10.1) гидролиз органических соединений, например, эфиров (разд. 29.4.1), амидов и нитрилов (разд. 33.11) омыление, гидролиз эфиров глицерина для получения мыла  [c.395]

    В работе [1] приведен содержательный обзор Техника эксперимента с применением низкокипящих растворителей , а в статье [5] описана современная аппаратура для проведения кондуктометрического титрования в жидком аммиаке при помощи растворов амида калия известной концентрации. [c.125]

    Для определения содержания связанных кислот и аминов смешанные полиамиды подвергают гидролизу хлористоводородной кислотой. В продуктах гидролиза содержание кислот и амидов определяют титрованием [157]. [c.191]

    Некоторые классы органических соединений являются в определенных условиях в достаточной степени кислыми или основными, и поэтому их можно определять прямым титрованием основным или кислотным титрантом. К таким соединениям относятся амины, амиды, четвертичные аммониевые гидроокиси, карбоновые кислоты, енолы, фенолы и кислые эфиры серной и фосфорной кислот. [c.12]

    Выше рассмотрена дифференциация веществ одинаковой химической природы, но обладающих различными константами ионизации. В развитии методов анализа многих функциональных групп очень важно ликвидировать влияние на дифференциацию образцов противоположной химической природы по сравнению с природой определяемого вещества. Специфическое определение третичных аминов ацетилированием первичных и вторичных аминов и последующим кислотно-основным титрованием — пример метода, в котором присутствуют оба типа посторонних влияний. При взаимодействии первичного или вторичного аминов с уксусным ангидридом образуется 1 моль амида и 1 моль уксусной кислоты. Присутствие амидов в высокой концентрации может мешать определению третичных аминов вследствие их основности. Образующаяся уксусная кислота может мешать из-за кислотности. Оба типа посторонних влияний могут быть ликвидированы путем соответствующего подбора реакционной среды и среды для титрования. Для установления различия между аминами и амидами предпочитают использовать дифференцирующие растворители, такие, как ацетонитрил. Такие растворители препятствуют также помехам, возникающим вследствие кислотности уксусной кислоты. [c.28]


    Предлагаемая здесь методика может быть применена к амидам, которые образуют нелетучие амины, так как среда, в которой ведется титрование, рассчитана на исключение помех такого рода. [c.67]

    Наличие атома аз.ота в амидах дает возможность аналитического использования его для количественного определения амидов. Атом азота обусловливает основность соединения, поэтому амиды можно титровать непосредственно в специальных растворителях. Однако основной характер амидов выражен значительно слабее, чем у аминов. Амиды можно восстановить в амины, которые легко определять титрованием сложные эфиры восстанавливаются в соответствующие спирты или простые эфиры, не обладающие основным характером. [c.149]

    Этот метод — единственный метод прямого титрования амидов как оснований. В качестве растворителя пользуются уксусным ангидридом, а в качестве титранта — хлорной кислотой. [c.149]

    При анализе амидов, указанных в табл. 3.9, в качестве титранта использовали хлорную кислоту, растворенную в уксусной кислоте. Однако для формамида, по-видимому, превосходным титрантом является раствор хлорной кислоты в диоксане. Конечная точка титрования в этом случае получается более резкой (причина этого еще неясна). Для большинства амидов такое улучшение резкости конечной точки титрования хлорной кислотой в диоксане не наблюдалось. Были рассчитаны приближенные значения (А /ДК)макс для сравнения они приведены в табл. 3.9. На рис. 3.5—3.7 показаны типичные кривые титрования для некоторых амидов, ацетилированных и формилированных аминов и алифатических ангидридов, по степени основности варьирующих от слабых до сильных . (Однако это произвольная классификация, основанная на значении первой производной). [c.150]

Таблица 3.9. Результаты титрования амидов в уксусном ангидриде Таблица 3.9. <a href="/info/285384">Результаты титрования</a> амидов в уксусном ангидриде
Рис. 3.5. Кривые потенциометрического титрования амидов в уксусном ангидриде Рис. 3.5. <a href="/info/134078">Кривые потенциометрического титрования</a> амидов в уксусном ангидриде
    Рис, 87. Кривые потенциометрического титрования алифатических амидов [c.152]

    Аминосоединенжя можно дифференцировать в соответствии со степенью их замещенности, проводя три титрования хлорной кислотой в уксуснокислой среде титруя исходный образец (определение суммы оснований) и аликвотные части образца после их обработки фталевым (перевод первичных аминов в нейтральные фталимиды и определение суммы вторичных и третичных аминов) или уксусным ангидридом (перевод первичных и вторичных аминов в ацетамиды и определение третичных аминов) [184, 195]. Такой подход в сочетании с восстановлением LiAlH использован для группового анализа нефтяных амидов и нитрилов карбоновых кислот [196], при этом амиды, в зависимости от их строения, восстанавливаются в первичные, вторичные или третичные, а нитрилы — только в первичные амины [197, 198). [c.25]

    Групповой состав нефтяных КС весьма разнообразен в различных нефтях и нрямогонных нефтяных дистиллятах обнаружены карбоновые кислоты, фенолы, простые и сложные эфиры, кетоны, лактопы, амиды, ангидриды и некоторые другие классы кислородсодержащих веществ. Наиболее распространенными в сыры нефтях считаются КС кислого характера, в первую очередь кислоты и фенолы, общее содержание которых принято косвенно выражать в форме так называемого кислотного числа (количества мг КОН, расходуемого на титрование 1 г вещества). Обобщение приведенных в работах [410—413, 416 и др.] результатов определения кислотных чисел (более 460 анализов) показывает, что средняя органическая кислотность сырых нефтей закономерно сни- жается о увеличением возраста и глубины залегания (табл. 3.3 [c.87]

    Данные о константах диссоциации и ионном произведении показывают (табл. 42) возможность титрования в аммиаке таких слабых кислот, как сероводород, для которого рЙГ,= —lgiГц/ Lo ,A= 32,7 — 3,1 = 29,6 амидов кислот, напримврцнанацетамида (рА т = = 32,7 — 5,35 = 27,4) нитросоединенпй как кислот прп использовании амида иатрия как основания. [c.451]

    Исследованы НАС промышленной западно-сибирской нефти [15, 36]. Они представлены концентратами АК-4 и АК-5 (см. табл. 14). По сравнению с АК-5 в концентрате АК-4 больше содержится ареновых структур, азота и серы, меньше — кислорода. По результатам потенциометрического титрования соединения АК-4 характеризуются как слабоосновные, которые можно условно отнести к НАС. Пятая часть выделенных кислородных соединений СС представлена в основном тиофеновыми производными. В концентратах АК-4 и АК-5 содержалось относительно мало НАС, поэтому они были хроматографически сконцентрированы на силикагеле и разделены на оксиде алюминия (табл. 37). В пентано-бензольной фракции АК-4 сконцентрировались преимущественно арены и СС. Основная часть выделена спиртобензолом и бензолом. С увеличением полярности элюентов уменьшается протонодефицитность и увеличивается кислотность соединений. В бензольных фракциях сконцентрированы только НАС, а в спиртобензольной — основные и слабоосновные. Это несоответствие исходному концентрату можно объяснить, вероятнее всего, распадом ассо-циатов при хроматографическом разделении из разбавленных растноров. Можно предположить, что в образовании таких ассоциатов АС принимают участие вещества кислого характера. В АС присутствуют пирролы (поглощение в области 3460 см , проявляющееся в виде отдельного пика при разбавлении GI4), свободные группы ОН фенолов (3630 см ), пиридины (перегиб при 1560 см ), N-замещенные амиды (1600—1700 см в отсутствие поглощения при 3450—3400 м ). [c.56]


    В последнее время показано [80], что диборан является эффективным агентом для восстановления амидов первичных и вторичных, аминов. Восстановление в тетрагидрофуране при низкой температуре требует от 1 до 8 ч и дает для ряда амидов выходы от 79 до 98%, что было рпределено газохроматографическим анализом, выделением пикр.атов нли титрованием. Восстановление ряда 2,6-пипера-зиндионов дибораном дает пиперазины с выходами около 60% [811. Восстановление амидных групп дибораном в присутствии сложно- эфирных групп, по-видимому, осуществляется избирательно [821. . [c.481]

    Но иногда титрование в водных растворах вообще не может быть выполнено. Это бывает, в частности, когда анализируемый объект — смесь нескольких либо очень сильных, либо очень слабых кислот или оснований. Попробуйте, например, даже самой сильной кислотой оттитровать водный раствор, скажем, ацет-амида. Попытайтесь раздельно определить ( раститровать ) смесь хлорной и соляной или салициловой и уксусной кислот. Ничего не выйдет  [c.63]

    W) Мерк использовал способность почти всех типов азлактонов реагировать с бензиламином для определения их содержания в растворах. Реакция ведется при комнатной температуре. Спустя 18 час. избыток бензиламина извлекают раствором титрованной кислоты. По титрованию избытка кислоты определяют количество непрореагировавшего бензиламина и устанавливают содержание азлактона [The hemistry of Peni illin, гл. XXI, 735 (1949)]. 2-Фенил-4-изопропилиден-5-оксазолон (I) реагирует с жидким аммиаком, образуя два соединения амид а-бензамидо-р, -диметилакриловой кислоты (II), и, вероятно, амид а-бензамидо-р-метил-р-аминомасляной кислоты (III)  [c.446]

    АЦЙЛЬНОЕ ЧИСЛО, масса КОН (в г), необходимая для гидролиза 1 г соед., содержащего ацильную группу R O,-сложного эфира, галогенангидрида, амида или ани-лида карбоновой к-ты. Характеризует кол-во ацильных групп. При определении А.ч. к анализируемому в-ву добавляют спиртовой р-р щелочи и нагревают после завершения р-ции избыток щелочи оттитровывают 0,5 н. р-ром H L А.ч. =0,02805 (V - Fi)/j, где Fj и F,-объемы (в мл) р-ра НС1, пошедшие на титрование соотв. в холостом опыте и в опыте с пробой после гидролиза, а-навеска в-ва (в г). [c.235]

    Филипс и Бальци осуществили миграцию ацильной группы от N к О в следующих условиях. Этаноламид бензойной кислоты обрабатывался 3,3 н. раствором хлористого водорода в абсолютном спирте в течение 1 недели при комнатной температуре. Выход солянокислой соли аминоэтилбензоата составил 65%. В отличие от неполной и медленной миграции ацила от N к О обратная реакция протекает мгновенно и практически количественно. Так, через 2 мин после титрования соединения XVI до pH ГО и обратного титрования до pH 5 95% сложного эфира перегруппировывается в амид. Попытка провести ацильную перегруппировку в разбавленной соляной кислоте (0,04 н.) оказалась неудачной. [c.217]

    Титрованием водного раствора амида N-d-глюкoзидoди-гидроннкотиновой кислоты 0 н. раствором иода в присутствии бикарбоната была доказана легкость окисления дигидропроизводного до соответствующего амида 3-N-d-глюкoзи-до-пиридин-иодид-З-карбоновой кислоты (89). [c.82]

    Кислотно-основное титрование применялось при определении ртути в органических соединениях [207, 923, 1201]. Отмечается [207], что ртуть может образовывать комплексы с некоторыми амидами и их производными, например с мочевиной, ацетамидом, что может быть использовано при ее определении в фармацевтических препаратах. [c.87]

    Непротолитические растворители, как, например, нитрометан и ацетонитрил, можно использовать для титрования различных оснований. Такие растворители особенно приемлемы для совместного определения оснований различной силы, поскольку при этом выравнивания не происходит, за исключением оснований с рЛ"а(Н20) больше - 12. Эти растворители могут быть также использованы для титрования аминов с р.йГа(Н20) больше 2 и для амидов с р (Га(Н20) более 0,5. [c.20]

    Некоторые слишком слабые основания нельзя титровать в ацетонитриле, нитрометане или уксусной кислоте. Такие основания можно удовлетворительно титровать в непротолитическом растворителе — уксусном ангидриде [11]. Этот растворитель может быть использован для титрования аминов или амидов с р Га(НгО) больше 2,0. В этом растворителе также не происходит выравнивания при титровании аминов с piira(H20) меньше 10 поэтому его можно использовать для совместного определения оснований различной силы. Недостаток уксусного ангидрида заключается в его активности. Первичные и вторичные амины ацетилируются растворителем с образованием более слабых оснований. [c.20]

    ВОДНЫХ средах допустимо наличие посторонних веществ основного характера в большем количестве, чем в воде, без влияния на конечную точку титруемого основания. Таким образом, некоторые неводные растворители в сравнении с обычными растворителями меньше подвержены влиянию концентрации. Непротолитические растворители в этом отношении особенно хороши, в то время как растворители, подобные метанолу, ведут себя аналогично воде. Это хорошо иллюстрируется данными, ириведенными на рис. 6 для случая титрования триэтиламина в присутствии большой концентрации диэтилацетамида. При концентрации амида в 1000 раз большей, чем амина, скачок потенциала при титровании в ацетонитриле значительно больше, чем при титровании в метаноле. Однако ири эквимолярных концентрациях амина и амида различие между величинами потенциала незначительно. [c.25]

    В настоящую главу включены методы определения первичных, вторичных и третичных аминов, амидов и таких соединений, как нитрилы, нитросоединения, изоцианаты, изотиоцианаты и четвертичные аммониевые соединения. Четвертичные аммонийные гидроокиси, являющиеся сильными основаниями, могут быть определены прямым титрованием стандартными кислотами. Некоторые четвертичные аммонийные соли также могут быть определены или прямым титрованием, или путем превращения их в соответствующие ацетаты действием ацетата ртути и последующим титрованрюм в ледяной уксусной кислоте [9]. Эта методика была обсуждена в гл. 2. [c.46]

    Большинство методов для специфического определения третичных аминов основано на ацетплировании образца и последующем титровании ненрореагировавшего третичного амина. В условиях данного метода аммиак, первичные и вторичные амины превращаются в амиды, основные свойства у которых выражены значительно слабее, чем у третичных аминов. Методы этого типа зависят от возможности дифференцировать третичные амины и образующиеся амиды поэтому успех метода будет обеспечивать дифференцирующая способность выбранной системы растворителей. По этой причине кислотные растворители, подобные уксусной кислоте, можно. использовать не во всех случаях, так как они повышают основность амидов [c.58]

    При соответствующем выборе силы титранта этот метод может быть использован для определения степени чистоты третичных аминов даже при такпх низких концентрациях, как 0,005%, в присутствии первичных и вторичных аминов. В последнем случае метод может быть использован потому, что большие количества амида мало влияют на результат титрования третичного амина в среде метил-целлозольва, чего не удавалось достигнуть при титровании в других средах, предлагаемых ранее для определений третичных аминов. [c.60]

    Пробу, содержащую 0,006—0,009 моль амида, разбавляют в мерной колбе до 100 мл уксусным ангидридом. Переносят 10 мл раствора в высокий стакан, прибавляют 100 мл уксусного ангидрида и титруют 0,1 н. раствором хлорной кислоты в уксусной кислоте. Конечную точку титрования можно определять визуально или рассчитьюая максимальное изменение потенциала при введении малых порций хлорной кислоты. Удобно рассчитывать максимальное значение для постоянных значений Л1/, равных 0,05 мл, так как эту величину легко регистрировать на ленте для записи. [c.150]

    По этому методу проводят прямое титрование амидов в ледяной уксусной кислоте вместо уксусного ангидрида, как в методе Уаймера. Этот метод имеет свои преимущества и недостатки. Ледяная уксусная кислота — менее реакционноспособный реагент, чем уксусный ангидрид, и, следовательно, может применяться для тех амидов и гидразидов, которые склонны к реакции с уксусным ангидридом. Поскольку уксусная кислота не усиливает основных свойств амидов в такой степени, как уксусный ангидрид, простое потенциометрическое титрование оказывается невозможным следует пользоваться фотометрическим титрованием. [c.153]

    На рис. 3.12 показаны обычная и модифицированная кривые типа II титрования М,М-диметилкапроамида приблизительно 0,5 н. хлорной кислотой. Значения X выражены через объем добавленного титранта в пределах 2,630—3,090 мл. Окончательный объем титруемого раствора составлял около 30 мл, изменением объема при титровании практически можно было пренебречь. Кривизна нижней части кривой показывает, что даже для этого сравнительно сильного основания заметно проявляется сольволиз. Экстраполированная по линейному соотношению конечная точка титрования оказывается приблизительно на 0,04 мл выше, что для немодифицированного способа соответствует погрешности немногим более 1%. Остаточная кривизна исправленной кривой обусловлена, вероятно, тем, что такие амиды весьма мало склонны отдавать второй протон. Однако отклонение от линейности на [c.156]


Смотреть страницы где упоминается термин Амиды титрование: [c.63]    [c.25]    [c.124]    [c.130]    [c.654]    [c.244]    [c.149]    [c.66]    [c.276]    [c.69]    [c.26]    [c.152]    [c.153]    [c.154]   
Количественный органический анализ по функциональным группам (1983) -- [ c.149 , c.159 , c.173 ]

Современная аналитическая химия (1977) -- [ c.327 ]




ПОИСК





Смотрите так же термины и статьи:

Амиды кислот как основания, определени титрование в уксусном ангидриде

Амиды титрование гидроокисями четвертичных аммониевых основани

Амиды титрование кислотно-основное

Амиды, титрование в неводных средах



© 2025 chem21.info Реклама на сайте