Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

БЛМ бимолекулярные липидные мембраны

    Метод моделирования и получения искусственных мембран основан на получении и исследовании моно- и бимолекулярных липидных слоев, везикул, липосом и протеолипосом. Сущ ествует два основных типа искусственных мембран классические плоские и сферические мембраны различного размера. Для получения искусственных мембран используют различные фосфатиды, нейтральные глицериды, смеси липидов биологического происхождения, добавляя к ним холестерин, а-токоферол и другие минорные добавки. Потенциальная ценность искусственных мембран для исследований зависит от возможности включения в них природных белков, в особенности тех, которые обладают транспортными свойствами. Липосомы, со-стоящ ие из белков и липидов, стали получать в 60-е гг. термин протеолипосомы был введен В. П. Скулачевым. В настоящее время разработан целый ряд методов приготовления различных типов липосом и протеолипосом, а также их стандартизации по размерам, структуре, гомогенности, стабильности и другим характеристикам. Липосомы используют для доставки в клетку лекарственных и химических соединений, стабилизации ферментов в инженерной энзимологии, введения в клеточные мембраны молекул зондов, модифицирующих и моделирующих их поверхность. Большой интерес для генной инженерии и медицины представляют работы по введению в клетки при помощи липосом нуклеиновых кислот и вирусов. В липосомы включают митохондриальные компоненты и изучают на таких модельных системах процессы генерации энергии в клетках. Ультра-тонкие искусственные мембранные структуры — полислои Лен-гмюра—Бложе (ПЛБ) — применяют для получения био- и иммуносенсоров. Создаются ПЛБ с иммобилизованными ферментами и компонентами иммунологических систем. При использовании смешанных липид-белковых пленок ПЛБ получают информацию о функционировании белков и о липид-белковых взаимодействиях в мембране. Результаты изучения физических характеристик, проводимости, проницаемости и других свойств искусственных липидных мембран имеют большое зна- [c.216]


    Открытие пиноцитоза позволило ответить на два вопроса, которые еще 30 лет назад заставляли физиологов недоуменно пожимать плечами 1) как в клетку проникают молекулы, для которых бимолекулярная липидная пленка, т. е. элементарная мембрана, непроницаема 2) почему при использовании многих веществ клеткой затрачивается энергия Уже давно известно, что, например, соли в большинстве случаев могут попасть в клетку, только если клеточное дыхание не повреждено. Если же оно блокируется (разобщается), то поглощения солей не происходит. В настоящее время существуют многочисленные (впрочем, недоказанные) гипотезы, объясняющие такое активное поглощение веществ. Пиноцитоз, который, очевидно, не может идти без затраты энергии, по меньшей мере для некоторых случаев может рассматриваться как вполне подходящая модель. [c.237]

    РИС 5 1. А. Бимолекулярные липидные слои и мембраны [c.339]

    Рассмотрим строение и функции палочек (см. рис. 106). Зрительный пигмент палочек родопсин сосредоточен в наружных сегментах палочек, где он встроен в зрительные диски. Диски представляют собой замкнутые бимолекулярные липидные мембраны, напоминающие собой расплющенные воздушные шары, уложенные в стопку. Наружный сегмент соединен с внутренним сегментом тонкой Соединительной ножкой. Во внутреннем сегменте рядом с ножкой сосредоточено большое количество митохондрий, в нем же располагается ядро клетки. В конце внутреннего сегмента, обращенного к свету, находится синаптический контакт с нервным волокном. [c.246]

    В пользу ламеллярного липидного бислоя свидетельствует прежде всего то, что в воде бимолекулярные липидные мембраны (см. раздел 2.4) обладают рядом свойств биологических мембран. Только такой слой удовлетворяет термодинамическим требованиям расположения белка и липида в водной среде. [c.36]

    Плоские бимолекулярные липидные мембраны (Б Л М) формируются на отверстии в гидрофобном материале и разделяют два раствора электролита, состав которых можно целенаправленно изменять. Такие мембраны, вероятно, представляют наиболее адекватную модель биологических мембран. Они взяты за основу при реконструкции различных функциональных мембранных комплексов, так как большинство современных данных говорит в пользу того, что все (за некоторым исключением) естественные мембраны содержат в своей основе липидный бислой, и самосборка мембран начинается именно с его образования, а затем уже происходит внедрение в липид белковых, полисахаридных и других компонентов, что и приводит к формированию мембранной системы. [c.132]

    В последние годы весьма перспективной считается жидкостно-мозаичная модель структуры биологических мембран, предложенная в 1966 г. Д. Ленардом и С. Сингером, первоначальный вид которой представлен на рис. 1. Основу мембраны, согласно жидкостно-мозаичной модели, составляет двойной липидный слой. Большая часть мембранных белков имеет амфипатическую природу и образует глобулы, в которые могут включаться олигосахариды или специфические липиды с образованием гликопротеидов. Глобулы погружены в бимолекулярный липидный слой, причем некоторые из белков (интегральные) пронизывают пространство мембраны насквозь. Если представить, что мы смотрим на поверхность такой мембраны, то чередующиеся участки белков и липидов как бы создают мозаичную картину. Большая часть фосфолипидов представляет собой прерывистый двойной слой, полярные группы которого находятся в контакте с водой небольшая же их часть может жестко связываться с интегральными белками. Впо- лне возможно, что изменение фазового состояния липидного бислоя может вследствие, например, температурного фактора передаваться на интегральные белки и изменять их форму. [c.37]


    Какие механизмы лежат в основе образования плоской бимолекулярной липидной мембраны 2. Какую информацию несет вольт-амперная характеристика БЛМ 3. Чем объясняются изменения сопротивления н емкости БЛМ под влиянием додецилсульфата натрия  [c.286]

    Тонкую микроскопическую углеводородную пленку можно получить при сближении двух капелек воды в органической среде, содержащей подходящее поверхностно-активное вещество (ПАВ), например моноглицерид олеиновой кислоты, лецитин и др. Самопроизвольное утончение этой пленки завершается скачкообразным образованием участков (в виде круглых пятен) с толщиной около 50 А, представляющих собой структуру, состоящую из двух монослоев ПАВ, обращенных друг к другу углеводородными радикалами с некоторым количеством органического растворителя. Затем пятна разрастаются на всю площадь пленки. В отраженном свете такая пленка выглядит черной, поэтому ее называют черной углеводородной пленкой. В биологической литературе чаще используется термин бимолекулярная (черная) липидная мембрана (БЛМ). Вместе с водными эмульсионными, т. е. пленками одной жидкости, полученными в другой жидкости, и пенными пленками они относятся к классу жидких симметричных, или двухсторонних, пленок, т. е. пленок, ограниченных с обеих сторон одной и той же фазой. Из симметричных пленок наиболее подробно исследованы пенные пленки. [c.9]

    Бимолекулярный слой фосфолипидов составляет основу любой клеточной мембраны. Непрерывность его определяет барьерные и механические свойства клетки. В процессе жизнедеятельности непрерывность бислоя может нарушаться с образованием структурных дефектов типа сквозных гидрофильных пор. Вполне естественно ожидать при этом изменения всех функций клеточной мембраны, включая проницаемость и стабильность. Ранее эти проблемы обсуждались раздельно, однако создание модели липидной поры позволяет рассмотреть их с единых позиций. Важен тот факт, что липидные поры, помимо проницаемости, оказались причастными к стрессовым воздействиям внешних сил на уровне клеточных мембран. [c.48]

    Сама фотосинтетическая мембрана, из которой образованы тилакоиды, состоит из бимолекулярного липидного слоя, частично или полностью пронизывающего белковые макромолекулы. Липиды находятся Б аморфном, а не в кристаллическом состоянии, как считалось ранее. [c.14]

    Известна нестабильность мыльного пузыря, причиной которой может стать любая пылинка. Началом дестабилизации является прокол стенки пузыря и образование поры. В липидной бимолекулярной пленке клеточной мембраны поры появляются, если исключить чисто механические повреждения, в результате тепловых флуктуаций поверхности бислоя, электрического пробоя, замораживания пленки, действия поверхностно-активных веществ, осмотического давления, перекисного окисления липидов и др. Один из наиболее типичных и хорошо изученных примеров дестабилизации биологических мембран - гемолиз эритроцитов. Это явление включает на начальном этапе набухание клеток в гипотонической среде в результате действия сил осмотического давления. Во время набухания клетки мембрана растягивается, что обусловливает рост мембранного натяжения. При определен- [c.49]

    Липидные бислои могут быть приготовлены в различных конфигурациях бимолекулярные липидные (также называемые черные липидные) мембраны (БЛМ) и липосомы. [c.330]

    Бимолекулярная липидная пленка не особенно стабильна ее молекулы легко сдвигаются относительно друг друга, и тогда она распадается. Для построения более или менее прочного пограничного слоя, или мембраны (например, мембраны эндоплазматической сети), одних липидов недостаточно, тут нужно еще добавить гидрофильные белки. Судя по всему, они также образуют мономолекулярную пленку правда, ее не удается измерить так же точно, как липидную, поскольку лишь часть белковых молекул полностью вытянута, остальные же свернуты в спирали (вторичная структура) или уложены в складки (третичная структура). Белковые молекулы накладываются на гидрофильные внешние поверхности бимолекулярных липидных пленок. Теперь, наконец, изготовлена такая мембрана, какой она должна быть, чтобы соответствовать данным, полученным при исследовании проницаемости. Она выглядит как сэндвич внутри масло (двойная липидная пленка), снаружи с двух сторон хлеб (белковая пленка). Американцы так и называют эту систему сэндвич-структурой (рис. 90). [c.209]

    В такой обменивающейся среде достаточно только , чтобы произошло обособление маленьких областей, хотя бы за счет того, что они оказались окруженными мембраной,— и перед нами была бы примитивнейшая клетка. Мы уже говорили о том, что при наличии липидного материала могут спонтанно образовываться моно- и бимолекулярные пленки. Вполне вероятно, что они возникали в первичном бульоне , вычленяя и обособляя друг от друга почти шаровидные его области. Однако такие области не были полностью изолированы, ведь, как известно, липидные мембраны обладают определенной проницаемостью. Это делало возможным проникновение внутрь новых питательных веществ, когда старые оказывались использованными. [c.391]


    Сторонники слоистого строения мембраны допускают ряд модификаций элементарной мембраны, в частности возможность гидрофобного взаимодействия между белками и липидами, а также возможность проникновения белка в бимолекулярный липидный слой и т. д. [c.379]

    Изучение структуры мембран митохондрий методами рант-гено-структурного анализа и электронной микроскопии позволило сделать заключение, что темные слои стенок мембраны (рис. 3,1/) соответствуют слоям белка, а более светлые — бимолекулярным слоям липоидов. Общая картина строения мембранных стенок митохондрий в настоящее время представляется такой, какой она показана а рисунке 2>,VI. Каждая мембрана состоит из двух слоев белковых молекул и заключенных между ними двух слоев липидов. На этих белковых и липидных слоях адсорбированы ферменты, которые катализируют биохимические реакции в митохондриях. [c.30]

    Как мы уже говорили, ферменты, ответственные за синтез фосфолипидов, располагаются на цитоплазматической стороне везикул эндоплазматического ретикулума. По мере синтеза фосфолипидов происходит их самосборка с образованием термодинамически стабильных бимолекулярных слоев, которые включаются в мембрану везикул. Липидные везикулы, происходящие от эндоплазматического ретикулума, по-видимому, перемещаются к аппарату Гольджи, фрагменты которого в свою очередь сливаются с плазматической мембраной. Мембраны аппарата Г ольджи и везикул эндоплазматического ретикулума асимметричны в поперечном направлении как по фосфолипидам, так и по белкам, и эта асимметрия сохраняется до слияния с плазматической мембраной. Внутренняя поверхность везикулярных мембран оказывается с наружной стороны плазматической мембраны, а цитоплазматическая остается на ее цитоплазматической стороне (рис. 42.10). Поскольку поперечная асимметрия в мембранах везикул, происходящих из эндоплазматического ретикулума, существует еще до слияния с плазматической мембраной, основной проблемой сборки мембран становится вопрос о том, каким образом интегральные белки асимметрично включаются в липидный бислой эндоплазматического ретикулума. [c.135]

    Бимолекулярные липидные мембраны (БЛМ), называемые также бислойными или черными липидными мембранами, представляют собой широко используемую экспериментальную модель, которая позволяет воспроизводить в искусственных условиях многие свойстаа и характеристики биологических мембран. Структурной [c.570]

    Включение мембранных белков в бимолекулярные липидные мембраны открывает новые перспективы на пути дальнейшего сближения этой модельной системы с биологическими мембранами. В качестве примера успешной реконструкции функционально активных бислойных мембран можно привести слияние белоксодержащих лнпосом с уже сформированными мембранами в условиях осмотического стресса или под действием ионов Са и других агентов, сблегчаю1цих слияние мембран (рис. 303). [c.575]

    Липосомы, или фосфолипидные везикулы (пузырьки), получают обычно при набухании сухих фосфолипидов в воде или при впрыскивании раствора липидов в воду. При этом происходит самосборка бимолекулярной липидной мембраны. Минимуму энергии Гиббса отвечает замкнутая сферическая одноламеллярная форма мембраны. При этом все неполярные гидрофобные хвосты находятся внутри мембраны и ни один из них не соприкасается с полярными молекулами воды (рис. 1.11). Однако чаще получаются несферические многоламеллярные липосомы, состоящие из нескольких бимолекулярных слоев, - многослойные липосомы. [c.28]

    Первые исследования свойств устойчивых черных липидных пленок в водной среде явились хорошим экспериментальным подтверждением гипотезы Даниэлли и Дэвсона согласно которой бимолекулярный липидный слой служит основным структурным элементом биологических мембран. Уже первое сравнение свойств черных пленок и биологических мембран показало их большое сходство. Так, черные углеводородные нленки и биологические мембраны дают подобные электронно-микроскопические фотографии при наблюдении их поперечных срезов (трехслойная структура), имеют близкие значения толш ин, удельной электрической емкости, водной проницаемости и т. д. [c.167]

    Как видно из рис. 11.7, суммарный продольный ток через сечение аксона и окружающую среду равен нулю — в любом месте внутренние токи равны по силе и противоположны по направлению наружным. Но плотность продольного тока и продольная разность потенциалов между двумя точками внутри аксона отличны от таковых снаружи. Мембрана аксона имеет сопротивление 1000 Ом см , емкость 1 мкФ/см что соответствует бимолекулярному липидному слою толщиной в 5 нм с диэлектрической проницаемостью е = 5 и удельныл сопротивлением 2 10 Ом см. Во время генерации импульса проводимость мембраны увеличивается примерно в 10 раз. Можно моделировать электрические свойства мембраны эквивалентной схемой, показанной на рис. 11.9. Рисунок изображает лишь один элемент мембраны, и следует представить себе длинную линейную последовательность таких элементов, образующих непрерывный кабель. Сопротивление Я характеризует аксоплазму, наружный раствор имеется в большом избытке и изображается проводником без сопротивления. Натриевая и калиевая батареи и Гк определяют генерацию импульса, добавочная батарея г изображает движение других ионов, не изменяющееся при возбуждении. [c.366]

    Однако наложить на эти бимолекулярные липидные пленки с обеих сторон еще и белковые пленки оказалось уже труднее. Собственно говоря, теперь это уже не актуально, так как за это время и без того было выяснено, что видимые на электронных микрофотографиях мембраны в самом деле имеют структуру сэндвича. Правда, следует сделать одну оговорку то, что мы различаем под электронным микроскопом в качестве мембраны, а именно светлый средний слой и оба темных слоя, не абсолютно идентично липидной и двум белковым пленкам. Ведь темные участки (как и в случае с рибосомами) контрастируются искусственно — лучше всего это получается при обработке перманганатом калия и четырехокисью осмия. Но эти вещества не красят белковые пленки, а откладываются на границе липид — белок. Таким образом, толщина мембраны, регулирующей проницаемость, в действительности несколько больше 70—100 А — величины, полученной на основании наблюдений и измерений, сделанных с помощью электронного микроскопа. [c.210]

    Элементарная мембрана построена по типу сэндвича (белок —липид— белок). Сердцевину мембраны составляет бимолекулярный липидный слой, в котором молекулы липидов ориентированы перпендикулярно поверхности мембраны. Полярные головки липидных молекул направлены наружу, в сторону водной фазы, а гидрофобные остатки жирных кислот, спиртов, альдегидов обращены внутрь бимолекулярного слоя. Липидный слой с обеих сторон прикрыт непрерывными мономоле-кулярньши слоями белков (в меньшей степени, полисахаридов). Белки, входящие в состав мембраны, находятся в растянутой по поверхности липида форме и имеют р-конформацию. Белок по обеим сторонам мембраны может быть не одинаков, что определяет ее асимметричность. Мембрана стабилизирована за счет взаимодействия ионных групп липидов и белка. [c.375]

    Плоские бислойиые липидные мембраны (БЛМ) - другой тип модельных мембран. Такие мембраны получают на маленьких отверстиях диаметром около 1 мм в пластинке из пластика (например, фторопласта), погруженной в водную среду. На отверстие наносят каплю раствора липида (в спирте, хлороформе, гептане или других растворителях). Растворитель диффундирует из раствора в воду, и на отверстии остается пленка липида. Эта пленка спонтанно утончается до тех пор, пока не образуется бимолекулярный слой толщиной около 6 нм. Лишний липид собирается в виде ободка-торуса у краев отверстия (рис. 1.12). [c.30]

    В основе молекулярной организации мембран лежит способность липидов образовывать прочные мономолекулярные слои. Почти 50 лет назад было высказано предположение, что в основе мембран лежит бимолекулярный слой липидов. С тех пор было предложено множество различных моделей структуры мембраны, что отражено на рис. 9. Все предложенные модели ос-тавлязот неоспоримой белково-липидную природу мембран. Несмотря на большое число вариантов, представленные модели могут быть сведены к трем основным типам. [c.77]

    Примерно через 20 лет Э. Гортер и Ф. Грендель попытались экстрагировать мембранные липиды. Это им удалось сделать в 1925 г. Сравнив площадь монослоя экстрагированных из эритроцитов липидов с площадью поверхности клеток, они установили, что Овертон был прав — мембрана действительно состоит из липидов, а мембрана эритроцита представляет собой бимолекулярный липидный непрерывный слой. Эти же авторы предположили, что бимолекулярный липидный слой достигает толщины 3— [c.5]

    Использование различных методических подходов показывает, что одни из главных компонентов эритроцитов — гликопротеид и компонент А — имеют трансмембранное расположение. Действительно, белок чувствителен к про-назе в интактных эритроцитах. В результате гидролиза появляется новый компонент с молекулярной массой 70000Д, который является частью компонента А и обладает устойчивостью к дальнейшему действию фермента. Однако компонент А дает больше продуктов гидролиза и больше связывается с меткой в опытах с тенями эритроцитов. Все это приводит к выводу, что данный белок пронизывает мембрану в виде вилки или что молекула белка имеет вид глобулы, часть которой выше, а часть — ниже бимолекулярного липидного слоя. Аналогично была доказана и локализация в мембране главного гликопротеида с молекулярной массой ЗООООД, состоящего из 87 остатков аминокислот и 100 остатков сахара. Этот гликопротеид рассматривается как полипептид с углеводной головкой на ЫНг-конце, присоединенной к внешней поверхности мембраны. Центральная часть (а-спираль) гликопротеида проходит через мембрану и заканчивается на внутренней поверхности СООН-терминальной группой. [c.30]

    Даниелли и Дэвсон [19] в 1935 г., опираясь на более ранние результаты работ Гортера и Грендела [31], разработали теорию, согласно которой мембраны клеток и клеточных органелл представляют собой очень тонкие структуры, состоящие из бимолекулярных фосфоролипидных слоев. Эти слои с обеих сторон покрыты адсорбированными белковыми молекулами. Следующим шагом вперед явилась теория мембранных потенциалов, чувствительных к возбуждению клеток (в частности, нервных), созданная Гольдманом [30] и Ходжкин, Хаксли и Катцем [35, 36, 50]. Важную модель биологических мембран представляют двухслойные липидные мембраны, впервые полученные Мюллером с сотр. [74]. [c.13]

    Как видно из приведенных в табл. 25.3.1 данных, в миелине отношение липид белок выше, чем в других мембранах это соответствует специфической функциональной роли миелина. Напротив, для протекания высокоэффективных процессов окисления во внутренней мембране митохондрий необходимо присутствие нескольких ферментов и отношение липид белок у нее ниже. В мембране эритроцитов содержится относительно большое количество углеводов. Основной гликопротеин мембраны эритроцитов, гликофорин, как было показано [6], ориентирован на поверхности мембраны так, что Л -концевая часть его полипептидной цепи, несущая все ковалентно связанные остатки углеводов, выступает во внешнюю среду такими поверхностными олигосахаридами являются некоторые групповые антигены крови и рецепторы, включая рецептор вируса гриппа. Схематическое изображение возможного расположения белков, липидов и углеводов в биологической мембране, приведенное на рис. 25.3.1, основано на жидкомозаичной модели [7]. Полярные молекулы липидов образуют бимолекулярный слой (см. разд. 25.3.3), тогда как белки могут быть или связаны с поверхностью (так называемые внешние белки), или внедрены в бислой (так называемые внутренние или интегральные белки). В некоторых случаях белок может пронизывать бислой. Жидкомозаичная модель завоевала всеобщее признание предполагают, что мембрана в физиологических условиях является текучей, а не статичной. Так, липидные и белковые компоненты в изолированных [c.109]

    Данные этого рода были использованы в поддержку гипотезы, согласно которой мембраны состоят из двух слоев белка, разделенных бимолекулярным слоем липида. В настоящее время эта гипотеза, предложенная Даниэлли и Дэвсоном в 1943 г. [6], получила широкое признание. Основные черты модели Даниэлли и Дэвсона в схематическом виде представлены на фиг. 22. Полярные концы липидных монослоев обращены к белку, а углеводородные части обращены к центру именно эта центральная [c.51]

    Кроме того, выдвинут ряд схем строения мембраны, которые занимают промежуточное положение между концепцией слоистого строения и концепцией субъединиц. По модели Луси, мембрана на одних участках включает сферические липидные мицеллы, расположенные в гексагональном порядке, на других — бимолекулярный слой липидов. В некоторых местах вместо мицелл присутствуют глобулярные белковые молекулы. Липидные мицеллы и бимолекулярные слои покрыты сплошным слоем неглобулярного белка или гликопротеида. [c.377]

    Мембраны, с одной стороны, обладают стабильностью, обусловленной гидрофобными и гидрофильными взаимодействиями, а с другой — лабильностью вследствие конформационных изменений белков 1[122, 141]. Они содержат до 30—50 % воды, причем до 25 % этой воды находится в связанном состоянии (0,2— 0,6 г-г"" белка). Вода связывается не только белками, но и полярными участками молекул фосфолипидов, причем бимолекулярный строго ориентированный слой фосфолипидов образуется лишь в присутствии воды в результате гидрофобных взаимодействий молекул Если содержание воды в мембранах снижается ниже 20%, колфигурация липидного бислоя и мембранная целостность утрачиваются [5]. [c.64]

    Какое отношение имеют мыльные пузыри к развивающейся яйцеклетке Сходство кажется случайным, но на самом деле это далеко не так. Изоморфизм здесь имеет четкую химическую основу. Обсуждая химические функции клеточной мембраны. Де Дюв (De Duve, 1984) указывает Ряд важных свойств биологических мембран, а также мыльных пузырей объясняется структурой их липидных бимолекулярных слоев . Мыльный пузырь состоит из липидного бимолекулярного слоя. Мыла — это соли жирных кислот, молекулы которых называют амфифильными, потому что они состоят из гидрофобного хвоста и гидрофильной головки. Молекулы липидов биомембран (фосфолипидов) сложнее, но и они являются амфифильными. Биомембраны и мыльные пленки благодаря сходным химическим свойствам отличаются большой пластичностью. Они стремятся уравновесить поверхностное натяжение, принимая форму с минимальными объемом и поверхностью — сферическую, и выдерживают деформации, не разрываясь они стремятся образовывать замкнутые структуры. Разрезанный надвое мыльный пузырь, как и клетка, образует два меньших, но целых пузыря (рис. 10.10). [c.160]

    Первый тип —это модели Даусона —- Даниелли и Робертсона см. рис. 9, а, б, в). По данным этих авторов, мембрана представляет собой трехслойную структуру белок-лнпид-бслок ( сэндвич ). Находящийся в центре липидный слой является бимолекулярным слоем, наружная и внутренняя поверхности которого покрыты мономолекулярным слоем белка. Гидрофобные цепочки молекул липидов направлены друг к другу, а гидрофильные— к белку, с которым они электростатически связангл. Последующая критика этих моделей основывалась на том, что эти модели обладают жесткостью и несжимаемостью и молекулы [c.77]


Библиография для БЛМ бимолекулярные липидные мембраны : [c.1]    [c.2]    [c.173]    [c.249]   
Смотреть страницы где упоминается термин БЛМ бимолекулярные липидные мембраны : [c.16]    [c.39]    [c.28]    [c.36]    [c.572]    [c.66]    [c.109]   
Биоорганическая химия (1987) -- [ c.570 , c.575 , c.579 ]




ПОИСК







© 2025 chem21.info Реклама на сайте