Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генри температуры

    Пусть Ой — мольная скорость газового потока, а Я—константа Генри для абсорбирующегося компонента. Определим также, что Яс — мольная доля абсорбирующегося компонента на поверхности раздела (Н в см 1г-мол, мольная доля величина Н зависит от температуры и давления). [c.79]

    Коэффициент Генри представляет собой константу вещества, которая при заданной паре веществ теоретически зависит только от температуры и не зависит от давления и присутствия других компонентов в газовой фазе. [c.178]


    При постоянной температуре растворимость данного газа в данной жидкости прямо пропорциональна давлению этого газа над раствором (закон Генри)  [c.235]

    Поскольку многие вещества существуют при обычных температурах лишь в твердом состоянии, вычисление значений и 72 для них по уравнению (VI, 25) невозможно. Поэтому для растворенных веществ следует искать другие методы нормирования активности (выбор величины Ц). Для этого используют свойства предельно разбавленного раствора относительно второго компонента, а именно—применимость закона Генри (коэффициент Генри—постоянная величина), и постулируют  [c.210]

    Так как величины д при постоянной температуре постоянны, то это уравнение представляет уже знакомое нам уравнение (XVI, За) изотермы адсорбции Генри (см. стр. 439 и сл.) [c.510]

    Так как для разных по геометрической или электронной структуре молекул значения констант Генри, по крайней мере при подходящей температуре, обязательно различаются (поскольку они связаны с энергией молекулярного взаимодействия, разной для разных молекул, см. стр. 487 сл.), то теория равновесной хроматографии в области изотермы распределения Генри приводит к выводу об обязательном газо-хроматографическом разделении любых компонентов. В действительности этому мешают, во-первых, как мы уже видели, отклонения изотермы распределения (адсорбции, растворения) от изотермы Генри и, во-вторых, как мы увидим в дальнейшем, диффузионные и кинетические факторы. Эти причины приводят к асимметричному искажению и размыванию хроматографической полосы, что ведет к наложению полос близких по свойствам веществ друг на друга и поэтому мешает четкому разделению компонентов. [c.557]

    Величины t f хотя и пропорциональны константе Генри, но не являются физико-химическими константами, зависящими при данной температуре колонки только от природы системы данный компонент газовой фазы—неподвижная фаза. Это видно из того, что входящее в уравнение (16) время удерживания газа-носителя tQ зависит от объемной скорости газа w. Действительно, вводя выражение (14) в уравнение (16), получаем  [c.559]

    Отсюда видно, что свойс (вами физико-химической константы обладает удельный удерживаемый объем (газ-жидкость), поскольку величины константы Генри К и плотности неподвижной жид кости 8 при постоянной температуре полностью определяются природой системы растворяющийся компонент—раствори тель. [c.560]


    Так как единица массы адсорбента может обладать разной величиной удельной поверхности, то величина удельного удерживаемого объема (как и соответствующие величины константы изотермы адсорбции Генри Ка.с или Ка.р) в случае газо-адсорбционной хроматографии не является характеристикой природы системы данный компонент газовой смеси—поверхность адсорбента. Физико-химической константой, зависящей при данной температуре только от природы этой системы, будет абсолютная величина удерживаемого объема, т. е. отнесенная к единице поверхности твердого тела, а именно  [c.561]

    Связь 1/д или с константой Генри и с теплотой адсорбции или растворения позволяет сделать целесообразный выбор неподвижной фазы для газо-хроматографического разделения различных по свойствам веществ. Для разделения легких газов, очевидно, надо резко увеличить значение величины К, а следовательно, и Q. Этого нельзя добиться при газо-жидкостной хроматографии, потому что теплоты растворения газов малы. Поэтому для разделения легких газов и паров низкокипящих жидкостей применяют газо-адсорбционную хроматографию, используя молекулярные сита (цеолиты), пористые стекла, силикагели, алюмогели, неполярные активные угли (в зависимости от природы раз деляемых газов и паров). Для разделения паров жидкостей, кипящих при температурах от комнатной до 200 °С, хорошие результаты дает газо-жидкостная хроматография, причем неподвижная жидкость выбирается в соответствии с природой разделяемых компонентов для разделения неполярных веществ применяют неполярные жидкости (различные парафиновые и силиконовые масла) для разделения полярных веществ применяют полярные жидкости, такие, как полиэтиленгликоль, различные сложные эфиры и т. п. Часто применяют последовательно включенные колонки с разными по природе неподвижными фазами, меняют также направление потока газа-носителя после выхода части компонентов. Увеличивая однородность поверхности путем укрупнения пор и регулируя адсорбционные свойства соответствующим химическим модифицированием поверхности твердых тел, удается применить для разделения среднекипящих и высококипящих компонентов газо-адсорбционную хроматографию, обладающую тем преимуществом, что неподвижная фаза нелетуча при высоких температурах. [c.568]

    Во многих случаях, когда концентрация растворенного газа мала, а температура и давление далеки от критических значений для этого газа, соблюдается закон Генри, согласно которому концентрация А растворенного газа при равновесии связана с его парциальным давлением соотношением [c.31]

    Константа Генри увеличивается с ростом температуры, причем соблюдается следующее соотношение  [c.32]

    Растворимость кислорода в углеводородах и в топливе находится в пределах 10 —10 2 моль/(л-МПа) и мало зависит от температуры. Так, коэффициент Генри для кислорода в бензоле [c.71]

    Формула (1.3) справедлива только при равенстве температур топлива и воздуха. Значения максимальной растворимости воды в реактивных топливах и авиационных бензинах, вычисленные по формуле (1.3), приведены в табл. 1.15. Они вполне удовлетворительно согласуются с экспериментальными данными (рис. 1.7). Справедливость закона Генри по отношению к топливам подтверждена также рядом других исследований [33]. [c.23]

    Проницаемость газа А(Г, Рст) при заданной температуре Т и давлении Рст, близком к нулевому, находят по соотношению (3.57) при этом, согласно закону Генри, концентрацию растворенного вещества в мембране также принимают близкой к нулю. Первое слагаемое в показателе экспоненты учитывает суммарный эффект давления на коэффициент диффузии за счет деформации матрицы мембраны и повышения концентрация растворенного вещества в соответствии с уравнениями (3.64). Второе Слагаемое позволяет оценить изменение константы Генри с ростом давления. [c.98]

    В случае псевдоожиженного слоя, содержащего один крупный и несколько мелких компонентов, унос каждого из них происходит независимо от присутствия остальных если суммарное содержание мелочи в слое не превышает 25%. Это явление аналогично закону Генри для жидких многокомпонентных смесей. Можно предполагать, что константа Генри в рассматриваемом случае будет зависеть от скорости газа, подобно ее зависимости от температуры в случае жидких смесей. Более общая закономерность, напоминающая закон Рауля, наблюдалась при псевдоожижении ряда бинарных смесей, содержащих х массовых долей мелочи в слое массовая концентрация мелочи в уносе (г/) в полном диапазоне X = 0—1 пропорциональна произведению хух . [c.486]


    Жидкости содержат растворенные газы. Растворимость газов в жидкостях зависит от природы газов и жидкостей, а также от условий давления и температуры. Зависи.мость растворимости газа в жидкости от давления выражается законом Генри—Дальтона, согласно ко- [c.30]

    Так как при растворении газообразных веществ в жидкости А1 <0, то давление способствует росту растворимости газов. Эта зависимость для малорастворимых веществ выражается законом Генри (1802 г.) растворимость газа прн постоянной температуре пропорциональна его давлению. [c.237]

    Для небольших давлений закон Генри можно формулировать и так объем газа, растворяющегося при данной температуре в определенном количестве растворителя, не зависит от давления газа (это непосредственно следует из закона Бойля — Мариотта). [c.237]

    Равновесная зависимость, лежащая в основе процесса, определяется термодинамическими свойствами системы, составом, давлением и температурой фаз, устанавливается при длительном взаимодействии фаз, в идеальных случаях подчиняется закону Генри  [c.87]

    Согласно правилу фаз равновесное состояние системы прн наличии трех компонентов К = 3 (инертный газ, поглощаемый газ, абсорбент) и двух фаз Ф = 2 (газ — жидкость) определяется значениями трех параметров (Л/ = К-г2 — Ф = 3 + 2 — 2=3). В качестве таких параметров обычно фиксируют концентрацию в жидкости х, парциальное давление над жидкостью и температуру /. Равновесное распределение поглощаемого компонента между двумя фазами определяется указанными параметрами. При малых концентрациях распределяемого компонента связь между параметрами и л ири данной температуре выражается в форме закона Генри  [c.13]

    Значение константы Генри зависит от свойств газа, жидкости и температуры [1, 2]. Линейный характер зависимости (I, 1) нарушается ири больших концентрациях распределяемого компонента. Получить аналитическую зависимость тнпа (I, 1), т. е. предсказать значение т для какой-либо системы, возможно только для малых концентраций (менее 1 мол.%). [c.13]

    Растворимость газов зависит в сильной степени от вида газа и растворителя, от температуры и от давления. Влияние давления, если не касаться области высоких давлений, достаточно хорошо выражается следующим приближенным законом, называемым законом Генри  [c.325]

    Вычислите теплоту растворения азота в воде (Ям, == = 760 мм рт. ст.). использовав данные о зависимости константы Генри Кг от температуры  [c.190]

    Консганты Генри для кислорода и азота при растворении их в воде при 273,2 К равны соответственно 1,91 10 и 4,09 10 мм рт. ст. Рассчитайте понижение температуры замерзания воды, вызванное растворением воздуха (80% N2 и 20% Оа) при 1,0133 10 Па. [c.195]

    Коэффицент диффузии пропорционален Г/ц (Г — абсолютная температура д. — динамическая вязкость жидкости). Вязкость жидкости с ростом температуры уменьшается, поэтому повышение температуры увеличивает коэффициент диффузии, однако константа Генри с повышением температуры уменьшается. Скорость диффузии может в результате повышения температуры и повыситься, и понизиться в зависимости от того, какая величина — ц или Н — меняется сильнее. [c.156]

    Равновесные концентрации компонентов в соприкасающихся фазах определяются законом распределения вещества, который устанавливает постоянное соотношение между равновесными концентрациями вещества в двух фазах системы при определенной температуре. Постоянство соотношения не нарушается при изменении начальной концентрации компонента или общего давления в системе. Существует несколько формулировок закона распределения для разных фазовых систем так, частные случаи закона распределения для равновесий в системе Г—Ж известны под названием законов Генри и Рауля. [c.153]

    Равновесный состав фаз в системах газ—раствор газа в жидкости при температурах выше критических для идеальных газов определяется по закону Генри  [c.664]

    Здесь X—мольная доля поглощаемого компонента в жидкости р — парциальное давление того же компонента в газовой фазе над жидкостью в условиях равновесия ф — коэффициент Генри, изменяющийся с температурой и зависящий от природы газа и растворителя размерность ф должна быть такой же, как и размерность давления. [c.664]

    Если газ находится при температуре выше критической, то применение уравнения Рауля—Генри, строго говоря, невозможно. Однако, используя уравнение Клапейрона—Клаузиуса, при Х=сопз1 условно экстраполируют / до температур выше критической. [c.223]

    Растворимость газов часто характеризуют коиффициентом абсорбции, который выражает объем газа, растворяющегося в одном объеме растворителя с образованием иасыщенного раствора. Согласно закону Генри, масса газа, растворяющегося при постоянной температуре в данном объеме жидкости, прямо пропорциональна парциальному давлению газа. Из закона Генри следует, что объем растворяющегося газа (а значит, и коэффициент абсорбции) не зависит при данной температуре от парциального давления газа. [c.110]

    Отметим важное следствие закона Генри. Пусть при данном давлении в некотором объеме жидкости растворяется один объем газа, содержащий т г этого газа. Не меняя температуры, увеличим давление в п раз. При этом, согласно закону Бэйля— Мариетта, объем, занимаемый газом, уменьшится в п раз следовательно, масса газа, содержащегося в единице объема, возрастет в п раз и составит пт г. С другой стороны, в соответствии с законом Генри масса газа, растворяющегося в определенном объеме жидкости, также возрастет в п раз, т. е. также станет равна пт г. Иначе говоря, в данном объеме жидкости по-прежнему будет растворяться один объем газа. [c.222]

    Растворимость газа зависит от тем-перату ры и давления. Она уменьшается с повышением температуры и увеличивается- с повышением давления. Закон Генри, управляющий раство-и рением газо>в в жидкостях, относится к разведенным тсшорам идеальных газов в однородных растворителях. Так как и газ и раство ритель являются здесь сложными смесями, то отношения, которые здесь связывают растворимость углеводородов под давлением, не я в, 1яются. линейными. Этот закон, следовательно, в состоящий здесь дать лишь приближенные показания. В принципе [c.138]

    Растворимость газов в растворах электролитов. При рассмотрении абсорбции, сопровождаемой химической реакцией, нередко требуется знать растворимость непрореагировавшего газа в растворе, с которым газ взаимодействует. Обычными способами эту растворимость измерить нельзя, но для растворов электролитов ее можно найти методом Ван Кревелена и Хофтайзера , основанным на методе, первоначально предложенном Сеченовым . Принимается, что константы Генри в растворе Не и в воде Не° при той же температуре связаны соотношением [c.32]

    Поскольку давление, объем и температура связаны между собой уравнением Клапейрона, то зависимость одного типа может быть преобразована в зависимость другого типа. Поэтому достаточно остановиться на рассмотрении изотерм адсорбции. На прак тике наиболее часто используются изотермы Лэнгмюра, Фрейндлиха, Генри, Шлыгина—Фрумкина—Темкина—Пыжова, Бру-науэра—Эммерта—Теллера (БЭТ) (табл. 3.1). Каждая из них связана с определенными допущениями относительно структуры поверхности адсорбента, механизма взаимодействия молекул адсорбента и адсорбата, характера зависимости дифференциальных теплот адсорбции от степени заполнения поверхности катализатора адсорбатом. Например, наиболее широко используемая изотерма Лэнгмюра основана на следующих допущениях 1) поверхность адсорбата однородна 2) взаимодействие между адсорбированными молекулами отсутствует 3) адсорбция протекает лишь до образования монослоя 4) процесс динамичен, и при заданных [c.150]

    Проиллюстрируем сказанное па пр1шере расчета пароишдкост-ного равновесия многокомпонентной системы. Пусть задана система п компонентов и требуется по известному составу жидкой фазы и давлению системы определить температуру кипения и состав паровой фазы. Предположим, что система подчиняется законам отдельных газов и что давление равно 1 атм. Тогда зависимость между паровой и жидкой фазами по каждому из компонентов может быть выражена законом Генри  [c.34]

    На основании данных о растворимости газов в воде при различных темиера1урах и при общем давлении (газа и паров воды) 1,01 х X 10 Па (см. таблицу на с. 198) рассчитайте среднюю теплоту растворения газа в воде и сравните последнюю с теплотой конденсации растворенного гг.за. Установите графически зависимость растворимости газа в иоде аг температуры и давления. Вычислите интервал давления, в, К0Т0])0М растворимоеть подчиняется закону Генри. [c.197]

    Закон Рауля и закон Генри были установлены опытным путем. При анализе результатов измерений давления насыщенного пара растворов Раупи обнаружил важную закономерность при Т = onst равновесное парциальное давление пара каждого компонента (Р.) равно давлению пара этого компонента в чистом виде (Р ) при данной температуре, умноженному на его мольную долю (х в растворе Р = Р"-х . В этой связи раствор можно считать идеальным, если он подчиняется закону Рауля во всей области концентраций от х = О до - 1 при всех температурах и давлениях. [c.55]


Смотреть страницы где упоминается термин Генри температуры: [c.35]    [c.593]    [c.281]    [c.119]    [c.189]    [c.154]    [c.199]    [c.56]    [c.162]   
Адсорбция газов и паров на однородных поверхностях (1975) -- [ c.111 , c.126 , c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Генри



© 2024 chem21.info Реклама на сайте