Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузионный толщина

    Иными словами, толщина диффузионного слоя составляет примерно [c.311]

    Для молекулярно-конвективной диффузии толщина диффузионного пограничного слоя может определяться по уравнению [401]  [c.160]

    Трактовка рассматриваемых явлений на основе прямого анализа системы дифференциальных уравнений, описывающих конвективную массоотдачу в системах твердая стенка—жидкость и газ—жидкость, дается теорией пограничного диффузионного слоя В этой теории учитывается сложность структуры турбулентности внутри вязкого подслоя, прилегающего непосредственно к поверхности раздела фаз. Весьма существенной является постепенность затухания турбулентных пульсаций в подслое. Вследствие этого, поскольку в жидкостях величина коэффициента молекулярной ди(М)узии Оа обычно во много раз меньше величины кинематической вязкости V (v/Dд > 1), турбулентные пульсации, несмотря на их затухание, играют существенную роль в переносе массы почти до самой границы фаз. Пренебречь их влиянием можно лишь в пределах подслоя, названного диффузионным , толщина которого в жидкостях значительно меньше толщины вязкого подслоя. В пределах этого диффузионного подслоя преобладающим является перенос молекулярной диффузией. [c.101]


    В каком из растворов перенапряжение при плотности тока 3-10— А/см2 больше (по абсолютной величине) и насколько, если коэффициент диффузии Ag+ в этих растворах одинаков и равен 1,65-10-5 см -с- Считать возникающее перенапряжение чисто диффузионным. Толщину диффузионного слоя в обоих растворах считать одинаковой и равной 1,59-10-2 см. [c.107]

    Число Шервуда представляет собой меру интенсивности молекулярного и конвективного диффузионного переноса. При 5с << 1 можно пренебречь конвективной диффузией и толщина диффузионного пограничного слоя становится равной  [c.160]

    В наиболее общем случае диффузионный потенциал возникает в месте контакта двух растворов I и II, отличающихся друг от друга и качественно, и количественно (рис. 6.2). На границе этих растворов имеется некоторый переходный слой, где состав меняется от раствора I до раствора II и от раствора II до раствора, I. В этом же переходном слое локализуется и диффузионный потенциал. Строение переходного слоя, а также закон, по которому в нем происходит изменение состава, неизвестны. Однако можно утверждать, что если внутри его мысленно вырезать элементарный слой толщиной dx с границами АА и ВВ и предположить, что слева от границы АА активности присутствующих частиц будут а, а , а и аи, то справа от границы ВВ оии будут отличаться от этих значений на бесконечно малые величины. Если через выбранную систему обратимо и изотермически перенести 1 фарадей электричества, то в результате перемещения ионов изменится состав системы и, как следствие этого, ее изобарно-изотермический потенциал. Пусть его изменение отвечает величине dG, которую можно выра-> зить через химические потенциалы  [c.149]

    Процесс, в котором наиболее медленной стадией является подвод реагирующих компонентов или отвод продуктов реакции, протекает в диффузионной области. Это характерно для гетерогенных систем. Константа скорости процесса к в этом случае определяется как к = 0 8, где О — коэффициент диффузии б — толщина диффузионного слоя, зависящая от многих переменных. Для ускорения процессов увеличивают диффузию путем усиленного перемешивания, повышения скорости потоков взаимодействующих фаз, изменения условий, влияющих на вязкость, плотность и другие физические свойства среды. [c.90]

    В. Г. Левич получил количественные соотношения, связывающие толщину диффузионного подслоя и коэффициент массоотдачи в жидкой фазе с гидродинамическими характеристиками и физическими свойствами жидкостей, применительно к системам жидкость—твердая стенка и жидкость—газ. При этом в последнем случае причиной затухания пульсаций у свободной поверхности считается наличие поверхностного натяжения. [c.101]


    При турбулентном режиме течения, вследствие статистического характера пульсационного движения, перенос массы в ядро потока считается аналогичным переносу массы по механизму молекулярной диффузии [401]. Эта гипотеза позволяет представить толщину турбулентного диффузионного слоя по тем же зависимостям, что и при молекулярной диффузии, но с коэффициентом эффективного турбулентного [c.160]

    Сопротивление в уравнении (1Х-1) для данного процесса также будет характеристической величиной. В случае диффузионного массообмена образуется пленка, через которую и происходит диффузия следовательно, сопротивление будет пропорционально толщине этой пленки. При теплопередаче величина сопротивления пропорциональна толщине стенки, разделяющей. две среды. В случае химической реакции в гомогенной системе с сопротивлением связана энергия активации процесса и т. д. [c.348]

    Ввиду малости по сравнению с характеристическим временем распространения фронта диффузионной волны толщина диффузионного [c.173]

    Интересно отметить, что численные расчеты уже при Ре> 10 дают хорошее соответствие для критерия Шервуда, определенного формулой (4.95), хотя при таких значениях Ре толщина диффузионного слоя на лобовой части сферы составляет величину порядка десятых радиуса частицы. По мере увеличения значений Ре область, в которой сосредоточен основной перепад концентраций, становится все более тонкой. Наблюдается процесс формирования диффузионного пограничного слоя (рис. 4.10). [c.196]

    Дпя внешней задачи среднее расстояние между центрами капель при ( = 0,18 равно 2,9К. Толщина диффузионного слоя при Ре 10 составляет 6 3 10 . Эта оценка может служить косвенным обоснованием независимости 8Ь от задержки дисперсной фазы при учете изменения относительной скорости обтекания частиц в стесненном потоке. [c.209]

    Здесь 8, и 5, - толщины диффузионных пограничных слоев в первой и второй фазах. [c.266]

    Величину Ф , входящую в формулу (6.51), определим, полагая, что пр больших К2 толщина зоны реакции пренебрежимо мала и может быть заменена фронтом. Решение уравнений диффузионного пограничного слоя относительно реагирующих веществ при допущении, что фронт реакции совпадает с гидродинамической линией тока [405], приводит к значению Фо , совпадающему с результатами расчета по формуле (6-60). Для мгновенной химической реакции второго порядка эта формула будет иметь место при любых значениях Ре, поскольку в данном случае роль гидродинамического влияния, как обсуждалось выше, несущественна. [c.275]

    В стационарном диффузионном потоке градиент концентрации постоянен Fia всем пути процесса и поэтому его можио заменить соотношением, где O — толщина слоя, через который происходит диффу- [c.425]

    V-1-1. Пленочная модель, первоначально предложенная Уитменом в большой мере основана на представлениях Нернста о диффузионном слое и упрощенных моделях теплоотдачи от твердых поверхностей к движущимся жидкостям. Согласно этой модели, у поверхности жидкости, граничащей с газом, имеется неподвижная пленка толщиной б. В то время как состав основной массы перемешиваемой жидкости однороден, концентрация в пленке снижается от Л , у поверхности до Л у плоскости, разделяющей пленку и основную массу жидкости. Конвекция в пленке полностью отсутствует, и перенос растворенного газа через нее осуществляется исключительно молекулярной диффузией. Эта простая модель приводит к следующим соотношениям (см. раздел 1-1-3)  [c.100]

    У-13-4. Сопоставление пленочной модели и моделей поверхностного обновления. Из анализа уравнений (V, 145)—(V, 156) видно, что выражения, полученные на основе модели Данквертса, содержат, в отличие от полученных для пленочной модели, отношение У уЮ . Так как V то с помощью модели Данквертса устанавливается значительно большее повышение температуры за счет тепла абсорбции и реакции. Это является следствием того, что согласно моделям обновления поверхности глубина проницания, или пенетрации, тепла в жидкость во время экспозиции газу много больше глубины пенетрации растворенного газа из-за значительного превышения величины коэффициента температуропроводности у величины коэффициента молекулярной диффузии Од. Это означает, что в пленочной модели толщина пленки при передаче тепла должна быть больше толщины диффузионной пленки Для передачи вещества [c.141]

    Этот случай соответствует диффузионному режиму, когда скорость процесса зависит от коэффициента диффузии и толщины диффузионного слоя. [c.171]

    При толщинах, больших критической, скорость поверхностной реакции велика по сравнению со скоростью притока реагента, а концентрация последнего на поверхности мала. В этом случае мы находимся в диффузионной области. [c.91]


    Зельдович рассматривает предельный случай — слой бесконечной толщины. Поверхность пористого тела может при этом считаться плоской, а диффузионный перенос массы — происходящим перпендикулярно поверхности. Уравнение (1,238) принимает в этом случае вид  [c.97]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    Такое расхождение связано с тем, что теория Гуи — Чап-мапа не учитывает собственного объема ионов, которые отождествляются с материальными точками, обладающими только зарядами. В результате этого ничто не препятствует ионам в принятой модели подходить сколь угодно близко к поверхности металла. Расположенная в растворе часть двойного слоя может оказаться локализованной, несмотря на свою диффузность, в очень тонком слое, значительно меньшем радиуса иона. В этом легко убедиться, если, подобно тому как это делалось в теории Дебая — Гюккеля, ввести характеристическую длину /д, определяющую толщину плоского конденсатора, эквивалентного по емкости диффузионному двойному слою. Характеристическую длину можно найти, приравняв правые части уравнений (12.4) и (12.7)  [c.266]

    Таким образом, диффузионное неренапряжение определяется в первую очередь предельной плотностью тока щ1) пли величиной константы /Сд, Предельная плотность тока по теории Нернста — Бруннера, как это следует из ург.внения (15.28), зависит прежде всего от коэффициента диффузии соответствующих частиц , их заряда 2 , начальной концентрации Сг° (или, что то же самое, концентрации за пределами диффузионного слоя) и толщины диффузионного слоя б. Числа переноса данного внда ионов ii, как ул< е отмечалось, могут быть сделаны равными нулю кроме того, миграция вообще отсутствует в случае незаряженных частиц. Коэффициент диффузии можно либо рассчитать, либо заимствовать из экспериментальных данных определение начальной концентрации С также не представляет затруднений. Наименее определенной величиной является толщина диффузионного слоя, которая не может быть рассчитана в рамках теории Нернста—Бруннера. Ее определяют экспериментально, чаще всего из измерения предельной илотности тока. Опытные данные показывают, что б весьма мало зависит от состава раствора, но замс но меняется при изменении режима движения электролита. Эту зависимость можно передать эмпирической формулой [c.310]

    Д. я больншпства растворов v имеет порядок 10 м -с . Передача растворенного вещества от слоя к слою, т. е. его диффузия, определяется коэффициентом диффузии D порядок которого составляет обычно 10 м -с-. Таким образом, передача движения является более эффективной, чем передача растворенного вещества диффузней, и поэтому при сопоставимых значениях DuwD градиент скорости может быть меньше, чем градиент концентрации, т. е. толщина слоя Прандтля должна быть больше, чем толщина диффузионного слоя брг>б. Существует следующее соотношение между этими величинами  [c.311]

    Некоторые практически важные случаи конвективной диффузии. Для толщины диффузионного слоя в условиях естественной конвекции (наличие градиента концентрации, а следовательно, и градиента плотности раствора) при вертикально расположенном ттластинчатом электроде — случай, весьма часто встречающийся в электрохимической практике (стационарные ванны, аккумуляторы), было выведено уравнение [c.312]

    Вращающийся дисковый электрод. Особенность вращающегося дискового. электрода (см. рис. 15.6), как это было показано рядом авторов, заключается в постоянстве толщины диффузионного слоя в любыз точках его поверхности, если только б<г, где л — радиус дискового электрода, В то же время величина б является функцией угловой скорости вращения дискового электрода [c.313]

    Существование в вязком подслое турбулентных пуЛ1>саи.ий и их постепенное затухание с приближением к межфазной границе имеют принципиальное эваче-, ние для проблемы массопередачн, особенно в тех случаях, когда процесс массо-пгредачи лимитируется переносом в жидкой фазе. Действительно, поскольку а жидкостях коэффициент молекулярной диффузии обычно значительно меньше коэффициента кинематической вязкости, турбулентные пульсации, несмотря на свое достаточно быстрое затухание в вязком подслое, дают заметный вклад в массовый поток вещества к границе раздела фаз. Влияние пульсаций на массоперенос становится пренебрежимо малым лишь в пределах так называемого диффузионного подслоя, толщина которого для жидкостей мала по сравнению. с толщиной вязкого подслоя. Скорость межфазного массообмена существенно зависит от характера изменения эффективного коэффициента турбулентной диффузии Pt вблизи межфазной границы. Если предположить, что функция Dt (у) достаточно хорошо описывается первым членом разложения в ряд Тейлора [c.177]

    Сайт процессов переноса массы сосредоточен в диффузионном пограничном слое. Хронопространственная метрика сайта определяется толщиной этого слоя и временем контакта фаз. В зависимости от характера движения потока сплошной среды в зоне контакта фаз различают молекулярный, конвективный и турбулентный механизмы диффузии. [c.160]

    Но стенке абсорбера стекает пленка жидности толщиною 6 (на левой части рисунка скорость стенания одинакова по всей толщине пленки, на правой его части распределение скоростей имеет определенный профиль). Абсорбируемое пленкой веп1ество проникает I) нее путем диффузии (наивысшая концентрация Со — на границе с газом). В жидкой илен1 с два потока конвективный и диффузионный. Концентрация вещества изменяется не только вдоль оси г, но и вдоль оси X. [c.72]

    Неизбежность отставания механического ударного фронта и химической реакционной зоны вытекает из кинетических положений. В стационарной ударной волне, движущейся через газ со сверхзвуковой скоростью (у 10 — 10 см сек), градиент плотности через ударный фронт ограничивается диффузией. Диффузионный поток вещества через ударный фронт толщиной бд равен Бд дх ОАд 8в, где О — средний коэффициент диффузии в ударном фронте, а Ар — изменение плотности. В стационарном состоянии он должен быть равен потоку массыр г и внутрь ударной волны. Таким образом, решая уравнение относительно б , получаем [c.405]

    Ими показано, что при близком к захлебыванию режиме подвисания в аппарате создаются наиболее благоприятные условия массонередачи между жидкой и газовой фазой вследствие возрастания толщины жидкостной пленки на кольцах насадки, увеличения степени их смоченности и более равномерного распределения жидкости, а также вследствие изменения других условий, способствующих интенсивному массообмену (увеличение скорости газа, падение диффузионного сопротивления граничащего с газом слоя жидкостной пленки, возникновение волн и вихрей на ее поверхности и др.). [c.18]

    Допустим, что кусок твердого тела с поверхностью 5 растворяется в ненасыщен-иом растворе этого вещества при перемешивании. Перемешивание жидкости ие захватывает полностью всего ее объема, и некоторый слой, прилегающий к поверхности твердого тела, остается в относительном покое (рис. 179). В этом слое концентрация растворяемого вещества переменна непосредственно на поверхности тела раствор остается практически насыщенным а на внешней границе слоя концентрация вещества такая же, как в остальном объеме раствора с. Этот слой называется диффузионным, так как изменение концентрации в нем определяется процессом диффузии. При более иптенсивном перемешивании толщина диффузионного слоя уменьшается. Прн толщине диффузионного слоя градиент концентрации будет [c.426]

    Артор не совсем точно излагает основные концепции, лежащие в основе модели Кинга, а также выводы в отношении характера зависимости от В а, вытекающие из нее. В основу модели положена возможность одновременного действия двух механизмов переноса вещества от свободной поверхности вглубь жидкости в турбулентном потоке. Один из них соответствует постепенному затуханию коэффициентов турбулентного обмена с приближением к межфазной границе. Этот механизм Кинг считает относящимся к вихрям сравнительно небольшого масштаба. Другой механизм связан с обновлением поверхности сравнительно крупными вихрями (их размер должен быть больше толщины слоя, в котором происходит затухание по первому механизму и где соответственно происходит основное изменение концентрации). Таким образом, модель Кинга, по существу, включает представления теорий пограничного диффузионного слоя (см. выше) и обновления поверхности (см. ниже). Что касается возможного характера зависимости от О а, то на основании собственных экспериментальных данных, полученных в ячейке с мешалкой и в насадочной колонне и анализа результатов, полученных другими исследователями, Кинг приходит к выводу о более узком интервале практически возможного изменения показателя степени при Оа от 0,5 до 0,75. Прим. пер. [c.102]

    Прежде всего важно выяснить, является ли толщина диффузионной пленки у поверхности жидкости практически ничтожно малой по сравнению со средней толщиной слоя жидкости, стекающей по насадке, т. е. будет ли намного меньше, чем На. Это необходимо для определения возможности применения в расчетах выражений, полученных в главе VI. Использование значений /, полученных Шул-мэном и др. , и kl и а, приводимых Данквертсом и Шарма (см. раздел IX-1), показывает, что для колец Рашига размером от 13 до 38 мм в обычно используемом диапазоне плотностей орошения отношение D alkiL составляет примерно от Ю" - до 10 , будучи меньшим для более крупных насадок. Поэтому объем жидкости в насадке в целом практически всегда значительно превышает объем диффузионной пленки. Однако, разумеется, действительная толщина жидкостного слоя изменяется в насадке от точки к точке и в некоторых местах становится даже меньше средней толщины диффузионной пленки. Это обстоятельство может ограничить условия применимости к расчету насадочных колонн обычно используемых пленочной модели и моделей обновления поверхности. Дополнительное рассмотрение этого вопроса содержится в разделе IX-1-5. [c.184]


Смотреть страницы где упоминается термин Диффузионный толщина: [c.17]    [c.214]    [c.7]    [c.148]    [c.311]    [c.313]    [c.319]    [c.128]    [c.177]    [c.73]    [c.161]    [c.170]    [c.609]    [c.427]    [c.15]   
Основы полярографии (1965) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Толщина



© 2025 chem21.info Реклама на сайте