Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жирные обмен

    Общеприменимым является синтез ангидридов кислот обменной реакцией между хлорангидридами и солями жирных кислот  [c.276]

    ЖЕЛЧНЫЕ КИСЛОТЫ — группа кислот сложного строения, содержащихся в желчной жидкости. Примером Ж. к. может быть холевая кислота. Ж. к. образуются в печени считают, что этот процесс связан с обменом холестерина. Комплексы Ж к. с жирами и жирными кислотами играют большую роль в усваивании жиров. Ж- к. применяют для синтеза стероидных гормонов. [c.96]


    В жесткой воде моющая способность мыл резко снижается растворимые натриевые или калиевые соли высших жирных кислот вступают в обменную реакцию с имеющимися в жесткой воде растворимыми кислыми карбонатами щелочноземельных металлов, главным образом кальция, [c.167]

    Для очистки кобальтового раствора его обрабатывают кобальтовой солью жирных кислот (кобальтовым мылом) при этом имеет место обменная реакция типа  [c.98]

    Реакцию проводят обычно в присутствии щелочи можно провести полный обмен спиртовых радикалов, если брать избыток спирта и отгонять образующийся (более легкокипящий) сложный эфир. Этим путем готовят эфиры жирных кислот из жиров. [c.255]

    Реакция обратима, и в зависимости от исходных веществ, условий ее проведения и стехиометрических соотношений реагентов устанавливается определенное состояние равновесия. Полученную смесь эфиров и спиртов обычно разделяют перегонкой. Фактором, катализирующим обмен, может явиться минеральная кислота примером применения такой добавки может служить превращение жиров в метиловые эфиры жирных кислот , а также получение бутилового эфира олеиновой кислоты Эту реакцию катализируют также ионы ОН . При добавлении небольшого количества едкого натра к спиртовому раствору сложного эфира реакция алкоголиза значительно ускоряется. Подобным же образом действуют алкоголяты, образующиеся в спиртовом растворе сложного эфира при введении в него небольших количеств металлического натрия . Путем алкоголиза можно получить такие эфиры, получение которых другими методами затруднительно ввиду малой стойкости кислоты, например изобутиловый эфир ацетоуксусной кислоты . [c.357]

    В кислой области pH (рис. 21) снижение межфазного натяжения углеводородными растворами эмульгатора ЭС-2, по сравнению с углеводородными растворами КО СЖК на данных границах раздела (кривая 1), обусловлено увеличением полярности данного соединения за счет образования " п Ии" комплексного соединения атома азота алкилоламидов с ионом хлора. В нейтральной и щелочной областях pH снижение межфазного натяжения в большей степени определяется ускорением обменных реакций образования металлических мыл жирных кислот на границе раздела фаз. [c.72]


    Фосфолипиды. Они входят в состав всех важных органов животного организма (мозг, печень, почки, сердце, легкие). Фосфолипиды играют важную биологическую роль. Они участвуют в белковом обмене обладают тромбопластической активностью, участвуют в процессе свертывания крови. Применяются при лечении атеросклероза [13]. По химическому строению фосфолипиды являются сложными эфирами многоатомных спиртов (глицерина, сфингозина) и жирных кислот. К ним относятся  [c.373]

    При избыточном количестве липидов в пище и заболевании диабетом образуются ацетоновые (или кетоновые) тела, т.е. смесь ацетона, ацетоуксусной кислоты и Р Гидроксибутирата. Кетоновые тела могут образоваться также при голодании, когда из жировых депо выделяются жирные кислоты, а обмен углеводов в печени снижен. При накоплении кетоновых тел также уменьшается pH биологических жидкостей и развивается метаболический ацидоз. [c.101]

    Кроме половых гормонов, из холестерина в надпочечниках синтезируются кортикостероидные гормоны, такие как альдостерон и кортизон первый регулирует электролитический и водный обмен, а второй - метаболизм углеводов, жирных кислот и белков. [c.116]

    Гидролиз — реакция обменного разложения между различными веществами и водой. Мыло как соль сильного основания и слабой кислоты в водном растворе подвергается гидролизу, т. е. взаимодействует с водой, распадаясь на жирную кислоту и свободную щелочь по уравнению [c.44]

    Пространственный контур (рис. 1.3) вьщеляет из технологической системы один аппарат, несколько аппаратов или часть аппарата (возможно, бесконечно малую его часть). После вьще-ления контура все потоки, пересекающие его границы (жирные линии), трактуются как Приходы субстанции в контур или ее Уходы из него. Если между потоками происходит обмен субстанцией, нередко при выборе контура потоки целесообразно формально обособить (сегрегировать) — примеры этому будут в курсе. [c.57]

    Реакционноспособным участком молекулы КоА в биохимических реакциях является 8Н-группа, поэтому принято сокращенное обозначение КоА в виде 8Н-КоА. О важнейшем значении КоА в обмене веществ (как будет показано далее—см. главы 9—11) свидетельствуют обязательное непосредственное участие его в основных биохимических процессах, окисление и биосинтез высших жирных кислот, окислительное декарбоксилирование а-кетокислот (пируват, а-кетоглутарат), биосинтез нейтральных жиров, фосфолипидов, стероидных гормонов, гема гемоглобина, ацетилхолина, гиппуровой кислоты и др. [c.237]

    Известно, что главным источником жирных кислот, используемых в качестве топлива , служит резервный жир, содержащийся в жировой ткани. Принято считать, что триглицериды жировых депо выполняют в обмене липидов такую же роль, как гликоген в печени в обмене углеводов, а высшие жирные кислоты по своей энергетической роли напоминают глюкозу, которая образуется в процессе фосфоролиза гликогена. При [c.370]

    Несомненно, и другие гормоны, в частности тироксин, половые гормоны, также оказывают влияние на липидный обмен. Например, известно, что удаление половых желез (кастрация) вызывает у животных избыточное отложение жира. Однако сведения, которыми мы располагаем, не дают пока основания с уверенностью говорить о конкретном механизме их действия на обмен липидов. В табл. 11.2 приведены сводные данные о влиянии ряда факторов на мобилизацию жирных кислот из жировых депо. [c.404]

    Ослабление основных свойств у ароматических аминов по сравнению с аминами жирного ряда, вероятно, обусловлено тем, что необобщенная пара электронов N-aтoмa вступает в обмен с л-электронами ароматического ядра в результате такого сдвига электронов Ы-атон приобретает более положительный характер и его склонность к присоединению протонов снижается  [c.567]

    В настоящее время разработан новый способ электролитического получения кобальта из его хлористой соли с применением нерастворимых анодов. Растворы от никеля и меди очищают обменной экстракцией жирными кислотами, а от свинца и цинка — адсорбцией анионитом ЭДЭЮП.  [c.405]

    ЛЕЦИТИНЫ — (холинфосфатиды, фосфатидилхолины) — сложные эфиры аминоспирта холина и диглицеридфос-форных кислот являются важнейшими представителями фосфолипидов. В молекулу Л. входят остатки жирных кислот (пальмитиновой, стеариновой, олеиновой и др.). Л. содержатся во всех растительных и животных организмах, значительное количество его содержится в яичном желтке, эритроцитах, в сое. В организме Л. принимают участие в обмене жирных кислот. Л., выделенные из природных источников, представляют собой белые или светло-желтые воскообразные продукты, растворимые в боль- [c.146]

    В последнее время для очистки кобальтового электролита предложили экстракцию примесей жирными кислотами [42]. Способ этот основан на протекании обменных реакций между металлами, находящимися в разных фазах в органической — в виде солей жирных кислот (мыл) и в водной — в виде сульфатов и хлоридов. Для экстракции используют фракции Ст—Сд или Си—С13 (число атомов углерода в молекуле кислоты) монокарбоновых кислот алифатического ряда общей формулой С Н2 + С00Н. [c.97]


    Органические кислоты имеют важное значение в метаболизме углерода, энергетическом обмене микроорганизмов, синтетических и диссимиляционных процессах. Использование кислот жирного ряда в качестве источника углерода зависит от вида и расы дрожжей, концентрации кислоты, длины ее углеродной цепи и степени электролитической диссоциации. Хорошими субстратами служат кислоты с длиной углеродной цепи от Сг до С4 (уксусная, пировиноград-ная, молочная, масляная и др.) при сравнительно низкой концентрации. Калийные соли кислот, содержащих в молекуле от 2 до 5 атомов углерода, стимулируют рост дрожжей в 1,4—3,3 раза по сравнению с соответствующими кислотами. [c.200]

    Токоферолы различаются по числу и положению метильных групп в бензольном цикле. Роль витаминов Е еще не выяснена до конца. Известно, что они благоприятствуют обмену жиров, поддерживают нормальную деятельность нервных волокон в мышцах, облегчают течение сердечно-сосудистых заболеваний. Токоферолы являются природными антиоксидантами. Они легко образуют свободные радикалы (за счет отрыва атома водорода от фенольного гидроксила), которые способны улавливать другие свободные радикалы, возникающие в организме в результате окислительных превращений биологически важных эндогенных субстратов. Например, они препятствуют разрушению кислородом ненасыщенных жирных кислот, приостанавливая дефадацию липидов клеточных мембран. Установлено, что ан-тиокислительные свойства токоферолов резко улучшаются в присутствии витамина С (явление синергизма). Так, их совместное присутствие увеличивает в сто раз сроки хранения свиного жира. [c.112]

    Экстракция жирными кислотами (а также алкилфосфорны-ми кислотами) относится к катионообменной экстракции, т. е. экстрагируемый катион металла обменивается на катион экстрагента. Применяется также анионообменная экстракция (экстрагенты — различные амины, обмен протекает между металлосодержащим анионом и анионом соли амина) и экстракции нейтральными экстрагентами (спирты, эфиры, кетоны и др.). [c.363]

    Алюминиевое мыло — высокогидрофобная нерастворимая алюминиевая соль высших жирных кислот, получающаяся при обменном разложении натриевого мыла солями алюминия  [c.237]

    Производные пиридоксина [85]. Известна важная роль пиридоксина в обмене непредельных жирных кислот [86], как, например, превращение линолевой кислоты в арахидоновую. Известно также, что жирнокислотные эфиры пиридоксина (например, пальмитат) обладают повышенной стойкостью [87]. Синтезирован тристеарат пиридоксина (2-метил-З-стеароило-кси-4,5-дистеароил-окси-метилпиридин) этерификацией хлоргидрата пиридоксина хлорангидридом стеариновой кислоты в среде пиридина по следующей схеме [85] [c.170]

    Биологическое действие. Специфич. ф-ция водорастворимых В. (кроме аскорбиновой к-ты) в организме-образование коферментов и простетич. групп ферментов. Так, тиамин в форме тиаминдифосфата-кофермент пируватдегид-рогеназы, а-кетоглутаратдегидрогеназы и транскетолазы витамин Bg-предшественник пиридоксальфосфата (кофер-меита трансаминаз и др. ферментов азотистого обмена). Связанные с разл. В. ферменты принимают участие во мн. важнейших процессах обмена в-в энергетич. обмене (тиамин, рибофлавин, витамин РР), биосинтезе и превращениях аминокислот (витамин В , В 2), жирных к-т (пантотеновая к-та), пуриновых и пиримидиновых оснований (фолацин), образовании мн. физиологически важных соед.-ацетилхолина, стероидов и т.п. [c.388]

    Одновременно Т.к.ц-метаболич. путь окисления до СО и HjO аминокислот, жирных к-т и углеводов, к-рые вступают в этот цикл на разл. его стадиях (схема 2). Кроме того, образующиеся ди- и трикарбоновые к-ты м.б. исходными субстратами в биосинтезе мн. соед. (схема 3). Так, оксалоацетат-субстрат в глюконеогенезе-, сукцинил-КоА-промежут. продукт в синтезе порфиринов, ацетил-КоА - в синтезе жирных к-т, стероидов, ацетилхолина. Образующийся в цикле СО2 используется в р-циях карбоксилирования в синтезе жирных к-т, орнитиновом цикле и др. Участие Т. к. ц. в биосинтезе и катаболизме мн. в-в обусловливает его важное место в обмене в-в. [c.634]

    Одна из систем транслокации производит обмен ADP на АТР. Этот адениннуклеотидный переносчик поставляет ADP в матрикс, где он подвергается фосфорилированию, и в отношении 1 1 переносит АТР в цитоплазму [60, 100—102 [. Отдельный переносчик ведает доставкой Pi, вероятно, в форме HjPO . Обычно полагают, что степень фосфорилирования = [ATP]/[ADP] [Pi]l имеет одно и то же значение снаружи и внутри митохондрии. Однако Клингенберг установил, что Rf снаружи в 10 раз больше, чем внутри [102]. Это должно означать, что вновь синтезированный АТР освобождается преимущественно снаружи внутренней митохондриальной мембраны. Меньшая часть АТР должна освобождаться внутри митохондрии, где она затрачивается на активацию жирных кислот, синтез белков и т, д. Пируват, по-видимому, тоже попадает в митохондрию с помощью собственного переносчика — по всей вероятности, вместе с протоном. С другой стороны, анионы дикарбоновых кислот, например малат или а-кетоглутарат, обмениваются в отношении 1 1, равно как и аспартат, и глутамат. [c.423]

    Третий пример взаимосвязи процессов метаболизма - общие конечные пути. Такими путями для распада всех биомолекул являются цикл лимонной кислоты (цикл Кребса) и дыхательная цепь. Эти процессы используются для координации метаболических реакций на различных уровнях. Так, цикл лимонной кислоты является источником СО2 для реакций карбоксилирования, с которых начинается биосинтез жирных кислот и глюкогенез, а также образование пуриновых и пиримидиновых оснований и мочевины. Взаимосвязь между углеводным и белковым обменом достигается через промежуточные метаболиты цикла Кребса а-кетоглутарат и глутамат, оксалоацетат и аспартат. Ацетил-КоА прямо участвует в биосинтезе жирных кислот и в других реакциях анаболизма, а в этих процессах связующими конечными путями выступают реакции энергетического обеспечения с использованием НАДН, НАДФН и АТФ. Важно подчеркнуть, что главным фактором для нормального обмена веществ и протекания нормальной жизнедеятельности является поддержание стационарного состояния. [c.120]

    Известно, что токоферолы выполняют в организме две главные метаболические функции. Во-первых, они являются наиболее активными и, возможно, главными природными жирорастворимыми антиоксидантами разрушают наиболее реактивные формы кислорода и соответственно предохраняют от окисления полиненасыщенные жирные кислоты. Во-вторых, токоферолы играют специфическую, пока еще не полностью раскрытую роль в обмене селена. Селен, как известно, является интегральной частью глутатионпероксидазы-фермента, обеспечивающего защиту мембран от разрушающего действия пероксидных радикалов. Биологическая роль витамина Е сводится, таким образом, к предотвращению аутоокисления липидов биомембран и возможному снижению потребности в глутатиониероксидазе, необходимой для разрушения образующихся в клетке перекисей. Участие токоферолов в механизме транспорта электронов и протонов, как и в регуляции процесса транскрипции генов, и их роль в метаболизме убихинонов пока недостаточны выяснены. [c.220]

    СТГ обладает широким спектром биологического действия. Он влияет на все клетки организма, определяя интенсивность обмена углеводов, белков, липидов и минеральных веществ. Он усиливает биосинтез белка, ДНК, РНК и гликогена и в то же время способствует мобилизации жиров из депо и распаду высших жирных кислот и глюкозы в тканях. Помимо активации процессов ассимиляции, сопровождающихся увеличением размеров тела, ростом скелета, СТГ координирует и регулирует скорость протекания обменных процессов. Кроме того, СТГ человека и приматов (но не других животных) обладает измеримой лактогенной активностью. Предполагают, что многие биологические эффекты этого гормона осуществляются через особый белковый фактор, образующийся в печени под влиянием гормона. Этот фактор был назван сульфирующим или тимидиловым, поскольку он стимулирует включение сульфата в хрящи, тимидина—в ДНК, уридина—в РНК и пролина—в коллаген. По своей природе этот фактор оказался пептидом с мол. массой 8000. Учитывая его биологическую роль, ему дали наименование соматомедин , т.е. медиатор действия СТГ в организме. [c.259]

    У млекопитающих активность пентозофосфатного цикла относительно высока в печени, надпочечниках, эмбриональной ткани и молочной железе в период лактации. Значение этого пути в обмене веществ велико. Он поставляет восстановленный НАДФН, необходимый для биосинтеза жирных кислот, холестерина и т.д. За счет пентозофосфатного цикла примерно на 50% покрывается потребность организма в НАДФН. [c.353]

    Не подлежит сомнению, что секрет передней доли гипофиза, в частности соматотропный гормон, оказывает влияние на липидный обмен. Гипофункция железы приводит к отложению жира в организме, наступает гипофизарное ожирение. Напротив, повышенная продукция СТГ стимулирует липолиз, и содержание жирных кислот в плазме крови увеличивается. Доказано, что стимуляция липолиза СТГ блокируется ингибиторами синтеза мРНК. Кроме того, известно, что действие СТГ на липолиз характеризуется наличием лаг-фазы продолжительностью около [c.403]

    Помимо прямых переходов метаболитов этих классов веществ друг в друга, существует тесная энергетическая связь, когда энергетические потребности могут обеспечиваться окислением какого-либо одного класса органических веществ при недостаточном поступлении с пищей других. Важность белков (в частности, ферментов, гормонов и др.) в обмене всех типов химических соединений слишком очевидна и не требует доказательств. Ранее было отмечено большое значение белков и аминокислот для синтеза ряда специализированных соединений (пуриновые и пиримидиновые нуклеотиды, порфирины, биогенные амины и др.). Кетогенные аминокислоты, образующие в процессе обмена ацетоуксусную кислоту (ацетоацетил-КоА), могут непосредственно участвовать в синтезе жирных кислот и стеринов. Аналогично могут использоваться гликогенные аминокислоты через ацетил-КоА, но после предварительного превращения в пируват. Некоторые структурные компоненты специализированных липи- [c.546]


Смотреть страницы где упоминается термин Жирные обмен: [c.257]    [c.612]    [c.79]    [c.250]    [c.483]    [c.628]    [c.147]    [c.337]    [c.315]    [c.315]    [c.552]    [c.195]    [c.572]    [c.313]    [c.147]    [c.274]   
Теоретические основы биотехнологии (2003) -- [ c.41 ]




ПОИСК







© 2025 chem21.info Реклама на сайте