Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конденсация олефинов с различными соединениями

    Каталитическая конденсация олефинов с различными соединениями [c.425]

    Конденсация олефинов с альдегидами (реакция Принса) позволяет в зависимости от природы олефина и альдегида, условий реакции, характера катализатора и растворителя получать различные соединения, в том числе первичные непредельные спирты Г39, 40]. [c.75]


    Все описанные выше технологические схемы производства присадок основываются, на использовании установок периодического действия, которые, как уже говорилось, не могут быть в достаточной степени автоматизированы и механизированы, В последние годы наряду с синтезом новых, высокоэффективных присадок к маслам ведутся большие работы по усовершенствованию действующих процессов производства присадок. В частности, разрабатываются непрерывные схемы, являющиеся более эффективными и экономически выгодными. Особое внимание уделяется разработке непрерывных схем для тех стадий или узлов производства, которые являются общими для процессов получения многих присадок например, алкилирование ароматических углеводородов и их производных олефинами, конденсация алкилфенолов с формальдегидом и другими соединениями, нейтрализация и сушка различных продуктов и отделение механических примесей, сульфирование масел серным ангидридом, отгонка растворителей и непрореагировавших продуктов, а также утилизация отходов производства присадок. [c.248]

    В условиях обычного термического крекинга, особенно под давлением, диолефины являются весьма неустойчивыми соединениями и быстро подвергаются дальнейшим превращениям. При высокой концентрации олефинов вновь образовавшиеся диолефины вступают, очевидно, в различные реакции конденсации с олефинами с образованием циклоолефинов и дальнейшим превращением последних в нафтеновые или ароматические углеводороды. [c.125]

    За последние 10—15 лет опубликовано много патентов, рекомендующих применять ВРз в качестве катализатора в реакции конденсации окиси углерода с олефинами, спиртами и простыми эфирами, в результате которой, в зависимости от условий, получаются органические кислоты или сложные эфиры [2—12]. Конденсацию можно проводить в жидкой и паровой фазах, при. атмосферном или повышенном давлении и различных температурах, а фтористый бор употреблять [8—18] или в виде молекулярных соединений с минеральными кислотами [2, 3 ], или с водой [5, 7, 19—30]. [c.288]

    Существуют различные мнения о механизме образования кокса как продукта поликонденсации олефинов или образованных в результате дегидрирования и конденсации тяжелых ароматических углеводородов, особенно полициклических. Смолистые и асфальтовые ком -поненты сырья и. сернистые соединения также увеличи -вают коксообразование [35]. [c.22]

    Магнийорганические соединения реагируют также с различными фтор-олефинами. Примером служит конденсация фенилмагнийбромида с дихлор-дифторэтиленом, идущая с образованием а-фтор-Р-дихлорстирола (выход 64%) [14]  [c.400]


    Особое внимание уделяется разработке непрерывных схем для тех стадий или узлов производства, которые являются общими для многих присадок, например алкилирование ароматических углеводородов и их производных олефинами, конденсация алкилфенолов с формальдегидом и другими соединениями, омыление различных продуктов, сушка присадок и отделение механических примесей, сульфирование масел газообразным серным ангидридом, отгонка растворителей и непрореагировавших продуктов. Некоторые непрерывные процессы (узлы) получения присадок и технологические схемы опытных установок приводятся ниже. [c.291]

    Ацетон, весьма склонный к реакциям конденсации (с альдегидами, олефинами, аммиаком, синильной кислотой и другими соединениями), находит применение в различных синтезах—при получении высших кетонов,, разнообразных промежуточных продуктов и др. [c.457]

    Таким образом ароматизацию, важный фактор повышения октанового числа бензинов каталитического крекинга, можно охарактеризовать, как вторичную реакцию, идущую через стадию полимеризации или конденсации олефинов, получаемых при крекинге различных исходных соединений. Простые циклоолефины С5 и Се, циклонентен и циклогексен 16] образуют значительное количество ароматических углеводородов, но с относнтельио высокой температурой кипения, что может быть результатом быстрой полимеризации или конденсации таких олефинов, с последующей изомеризацией кольца, переносом водорода и крекингом. [c.135]

    Подобное квазиэлектрофильное присоединение должно облегчить отщепление протона даже при pH 3—6. В подтверждение этого положения Больман приводит тот факт, что скорость электрофильных реакций различных ацетиленовых систем, указанных выше, имеет один и тот же порядок. И если допустить, что более сильно выраженный ненасыщенный характер обусловливает повышенную способность к комплексообразованию, то следует ожидать усиления комплексообразования за счет электро-фильньцс групп в Н и, следовательно, создания более благоприятных условий для окислительной конденсации. я-Комцлек-сы аналогичного типа хорошо изучены, и установлено, что поглощение V (С = С) в олефинах и соединениях типа КС = СК сдвигается соответственно на 60 и 100 см (область спектра комбинационного рассеяния) в присутствии ионов Ag+, Си+, Р1+ и т. д. Между реакциями Глязера и Зандмейера существует, по-видимому, сходство в том, что координационные эффекты также способствуют ее протеканию [74 ]. [c.263]

    Из литературных источников известно, что при крекинге на катализаторе протекают реакции конденсации, алкилирования, цик- лизации и ароматизации, в конце концов приводящие к образованию кокса путем передачи водорода к газообразным олефинам [125, 126]. Изучение механизма отложения кокса с использованием индивидуальных углеводородов позволило установить, что некоторые из них имеют высокую способность к коксообразованию. Многоядерные ароматические соединения, олефины и полиолефи-ны образуют большее количество этого продукта, чем нафтены и ларафины [126]. Применяя в качестве сырья углеводороды различных классов — парафины, нафтены, олефины и ароматические соединения, было найдено, что структура получаемого кокса во всех случаях одинакова. При этом показано, что при образовании кокса из олефинов промежуточными соединениями являются ароматические. Отмечена взаимосвязь между коксообразованием и основностью различных ароматических соединений. Другие авторы [127] обнаружили, что один из наиболее важных структурных элементов, найденных в коксе, включает конденсированные ароматические кольца. Кроме того, они же установили, что природа сырья влияет на характеристики кокса. [c.109]

    Действие водорода в 5 словиях Г. д. на различные соединения неодинаково. Парафины расщепляются, а образующиеся из них олефины интенсивно гидрируются, образуя парафины меньшего мол, веса высшие олефины гидрируются лишь частично и поатому тяжелые фракции жидкофазной Г. д, содержат значительное количество непредельных соединений, Ароматич, углеводороды при жидкофазной Г. д. гидрируются относительно медленно, протекание реакций конденсации их с олефинами в присутстиии водорода сильно тормозится. Полифенилированные углеводороды дают простейшие ароматич. углеводороды, а у конденсированных ароматич. углеводородов происходит гидрирование крайнего кольца с последующим его раскрытием и образовапием менее коиденси-рованных углеводородов. Возникающие при этом боковые группы отщепляются, давая более низкомолекулярные углеводороды. Шестичленные нафтены частично изомеризуются в пятичленные, частично распадаются. Пятичленные нафтены раскрываются г образованием углеводородов изостроения. Конечным результатом превращения азотистых, сернистых [c.452]

    Многие из внедренных в промышленность присадок получаются на основе алкилфенолов, сульфокислот, фосфорорганических соединений. Некоторые технологические стадии для синтезов различных присадок являются общими. Например, алкилирование фенола олефинами и конденсация фенола или алкилфенола с формальдегидом протекают в производстве всех присадок, получаемых конденсацией алкилфенолов с формальдегидом обработка различных продуктов сульфидом фосфора (V) (фосфоросернение) —общий процесс при получении многих присадок, содержащих серу и [c.221]


    Гидроформилирование [435] олефинов проводят действием моноксида углерода и водорода в присутствии катализатора, обычно карбонила кобальта, но это может быть и родиевый комплекс 436], например гидридокарбонилтрнс (трифенилфосфин) родий, или другое соединение переходного металла.В промышленности эта реакция называется оксо-синтезом, но ее можно провести и в лабораторных условиях в обычном аппарате для гидрирования. Субстраты по реакционной способности можно расположить в следующем порядке терминальные олефины с нормальной цепью>внутренние олефины с нормальной цепью> олефины с разветвленной цепью. Из сопряженных диенов получаются диальдегиды при катализе соединениями родия [437], но в присутствии карбонила кобальта образуются насыщенные моноальдегиды (вторая двойная связь восстанавливается). В молекуле субстрата могут присутствовать различные функциональные группы, например ОН, СНО, OOR, N, однако галогены, как правило, мешают реакции. Гидроформилирование тройных связей происходит очень медленно, и известно лишь небольшое число примеров таких реакций [438]. Побочно протекают альдольная конденсация (реакция 16-40), образование ацеталя, реакция Тищенко (т. 4, реакция 19-71) и полимеризация. Сообщалось о стереоселектпвном син-присоединении (см., например, [439]). С помощью хиральных катализаторов проведено асимметрическое гидроформилирование [440]. [c.211]

    После ТОГО как были рассмотрены различные методы введения двойной связи в существующий углеродный скелет, следует перейти к обсуждению второго типа реакций образования олефинов, когда постройка углеродного скелета сопровождается одновременным введением двойной связи. Иногда такие реакции осуществляются в две отдельные стадии — присоединение с последующим элиминированием. Если вторая стадия может быть проведена независимо от первой, такие реакции можно очевидно отнести к рассмотренным выше реакциям элиминирования первого типа. Хотя процессы присоединения — элиминирования уже давно использовали для синтеза некоторых производных олефинов, например для получения а,р-ненасыщенных карбонильных соединений конденсацией альдегидов и кетонов, только открытие реакции Виттига в середине 50-х годов вызвало интерес к реакциям этого типа как к общему методу синтеза олефинов. [c.188]

    Не нашли практического применения синтезы тиофена и его гомологов из диеновых углеводородов и серы [27, 28], диеновых углеводородов и сероводорода на различных катализаторах и в их отсутствие [29—30], из алифатических углеводородов и серы при температурах 600—700° [7, 13, 15—26], из олефинов и серы в присутствии ускорителей [32], из галоидугле-водородов со смесью сернистого ангидрида и сероводорода [32], из моноолефинов и сернистого ангидрида [36—46], из спиртов и сернистого ангидрида [55—58], из альфа-окисей с сероводородом в присутствии гидрата окиси бария [59] и из альфа-дикетонов и эфиров альфа-кетокислот с тио-диуксусной кислотой [59—61]. Наиболее высокий выход тиофенов (30—40%) был получен конденсацией 1,4-дифункциональных соединений с сульфидами типа P2S3 при высоких температурах [47—54]. [c.28]

    Данные термографического и спектроскопического изучения галоидирования олефинов позволяют предложить следующий механизм реакции при отсутствии растворителей. Первая стадия реакции, происходящая в основном в процессе конденсации исходных веществ, приводит к образованию нестойких молекулярных соединений различного состава. В подобных комплексах сильно возрастает поляризуемость и возможность самопроизвольного возникновения ионизированных состояний. Из УФ-спектров СзНб—Вгг следует, что энергия поглощения света на длинноволновом краю полосы при 2 мк соответствует 0,5 эв. По-видимому, при низких температурах в сильно взаимодействующих комплексах, образующихся в процессе конденсации с большим выделением тепла, возможна вторая стадия реакции, заключающаяся в образовании ионов или нон-радикалов, которые облегчают последующую реакцию присоединения. Образование конечных продуктов в последней стадии реакции обычно происходит при более высоких температурах в момент фазового перехода, когда наступает некоторая подвиж- [c.51]

    ГИДРОГЕНИЗАЦИЯ ДЕСТРУКТИВНАЯ - процесс деструктивной переработки различных, бедных водородом, низкосортных топлив — твердых горючих ископаемых, мазутов, крекинг-остатков, смол и т. п. — в пысококачественные моторные топлива и масла процесс проводят в жидкой или паровой фазе при высоких темп-рах (400—560°), под давлением водорода (200—700 ат) в присутствии катализаторов. Г. д. до нек-рой степени может быть отождествлена с процессом термич, крекинга, проводимого под давлением водорода, и подобно ему представляет совокупность ряда последовательных и параллельных реакций с тем, однако, отличием, что характерные для термич. крекинга процессы полимеризации и конденсации, приводящие к образованию продуктов уплотнения, подавляются в присутствии водорода. При Г, д. больиюе значение имеет присоединение водорода (гидри-рпнания олефинов, ароматич. углеводородов и гетероциклич. соединений) и деструктивное гидрирование, т, е. реакции расщепления, сопровождающиеся нри-соединением водорода. Наряду с этим при Г, д, протекают реакции распада, деполимеризации и изомеризации. [c.452]

    Различные типы реакций, в которых трифторид бора используется в качестве катализатора, подробно рассмотрены в гл. 6 монографии Трифторид бора и его производные [21]. Укажем лищь основные типы таких реакций 1) синтез насыщенных углеводородов олефинов, спиртов, меркаптанов, кетонов, эфиров, соединений, образующихся в результате межмолекулярного взаимодействия с окисью углерода, амидов, анилидов, нитрилов и органических соединений, содержащих серу 2) этерификации, включая конденсацию кислот с олефинами, кислот с ацетиленом, кислот со спиртами и альдольпую конденсацию 3) разложение 4) гидратация 5) дегидратация, включая реакции дегидратации спиртов, кислот и кетонов 6) гидрирование 7) нитрование 8) окисление 9) восстановление 10) сульфирование И) галоидирование  [c.188]

    Продукты конденсации окиси этилена с алкилфенолами относятся к одним из наиболее известных и широко применяемых поверхностноактивных веществ. Различные алкилфенолы при конденсации с 6—20 и более молями окиси этилена дают эффективные поверхностноактивные вещества. Фенолы могут быть MOHO-, ди- и полиалкилированы, а общее число углеродных атомов алкильных боковых цепей может изменяться от 5 до 18 и более. В качестве ароматического ядра, несущего фенольный гидроксил, может быть использовано бензольное, нафталиновое или дифениловое кольцо. В число алкилфенолов, применяющихся в наибольших количествах, входит диамилфенол, п-трет-окгилфенол (синтезируется из диизобутилена) и нонилфенол (получается из трипропилена). Крезолы, как и фенолы, также способны алкилироваться, хотя конечные оксиэтилированные продукты из них [21] несколько отличаются по свойствам от веществ на основе фенолов. Алкилирование фенолов производится спиртами или непредельными углеводородами в присутствии катализаторов Фриделя—Крафтса, т. е. соединений сильнокислого характера или электроноакцепторных веществ наряду с алкилфенолами в этих случаях обычно получается некоторое количество 0-алкилированного вещества—алкил-фенилового эфира, а также образуются продукты полимеризации олефина, применяемого для алкилирования. Выход этих побочных продуктов зависит [c.95]

    Данные термографического и спектрофотометрического изучения гало-идирования олефинов позволяют предложить следующий механизм реакции. Первая стадия происходит в процессе конденсации исходных веществ и приводит к образованию, в основном, нестойких молекулярных соединений различного состава. Возникновение при низких температурах сильно ассоциированных молекулярных соединений донорно-акцепторного типа повышает реакционную способность исходных молекул и облегчает образование кояеч гых продуктов без предварительного появления активных центров реакции — ионов. Последняя стадия реакции, приводящая к образованию конечных продуктов, очевидно, происходит в момент фазового перехода, когда появляется некоторая подвижность частиц. При этом наличие предварительно ориентированных молекул способствует получению с количественным выходом только одного продукта присоединения. При послойном намораживании олефина и галогена стадии комплексообразования и появления конечных продуктов удается разделить. Конденсация в режиме молекулярных пучков приводит к хорошему перемешиванию и облегчает процессы комплексообразования. Все стадии реакции практически сливаются, так как превращение двухком-понептной смеси в систему ориентированных взаимодействующих поляризованных молекул приводит к сильному перераспределению электронной плотности и создает условия для одновременного коллективного разрыва старых и образования новых связей. В результате процессы галоидирования и гидрогалоидирования олефинов идут в твердой фазе при температурах более низких, чем в условиях послойного намораживания. [c.223]


Смотреть страницы где упоминается термин Конденсация олефинов с различными соединениями: [c.656]    [c.452]    [c.454]    [c.657]    [c.44]    [c.167]    [c.559]    [c.240]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.439 ]




ПОИСК





Смотрите так же термины и статьи:

Олефины соединение к ним

Различные соединения



© 2024 chem21.info Реклама на сайте