Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент суспензий

    За исключением скалярных констант, подобных коэффициенту вязкости [Хо, коэффициенты пропорциональности, входящие в эти линейные соотношения, будут тензорами, зависящими лишь от геометрии частиц (т. е. их размера и формы) и постоянными по отношению к жестко связанным с частицей осям. Тогда вместо объемной концентрации ф в ориентационных формулах, аналогичных формулам (42) — (48), появится произведение ф на функцию распределения вероятности ориентаций, нормированную на единицу (ср. уравнение (91) для тел вращения). В силу тензорной природы характеризующих частицы коэффициентов суспензии несферических частиц должны обладать неньютоновскими свойствами, если распределение ориентаций упорядочено. В противоположность этому характеризующие сферические частицы тензоры изотропны, что и проявляется в ньютоновском поведении суспензии — по крайней мере при отсутствии массовых моментов. [c.48]


    В уравнениях (Х-4) и (Х-5) приняты следующие обозначения I — длина лопасти мешалки т — частота вращения мешалки р, V, а — плотность, кинематический коэффициент вязкости и поверхностное натяжение суспензий или эмульсии. [c.447]

    Значение константы к в формуле (2.20) может быть различным в зависимости от особенностей метода решения, взаимного расположения частиц в суспензии и от того, учитывается или нет отсутствие скольжения жидкости на стенках канала. Значения к, полученные различными исследователями, лежат в пределах от 1,3 для хаотически распределенных частиц до 1,9 для кубической решетки. Хаотическое расположение частиц в суспензии, исследованное в работе [104], создавалось с использованием программы, генерирующей случайные числа. Далее суспензия исследовалась обычным методом с помощью ЭВМ. Коэффициент 1,3 представляет собой среднее от значений для 231 исследованной суспензии, [c.66]

    Отметим, что не со всеми аргументами, приведенными авторами [41] для обоснования выражений (2.41) и (2.42), можно согласиться. В частности, несколько эклектическое объединение различных теоретических подходов привело к тому, что использованное ими выражение для эффективной вязкости суспензии с коэффициентом 2 = /з не переходит при в формулу Эйнштейна. Для объяснения этого факта авторам [41] пришлось привлечь недостаточно обоснованное предположение о том, что вязкость суспензии, измеренная с помощью вискозиметров в условиях, когда суспензия может рассматриваться как однофазная среда, должна отличаться от вязкости суспензии, в которой имеет место относительное движение фаз. Результаты расчетов вязкости суспензий, полученные методами самосогласованного поля по односкоростной [117] и двухскоростной моделям [118] не подтверждают этого факта и в обоих случаях дают одинаковые выражения для вязкости суспензии. [c.76]

    Исходные данные для расчета следующие поверхность фильтрования Рф = 50 м предельный перепад давления при фильтровании Ард = 2-10 Па высота слоя осадка кос = 12 мм съем осадка смывом струей жидкости коэффициент удельного сопротивления осадка согласно (4.13) = 1,13-109 (Др) . сопротивление фильтрующей перегородки Гф, = 12-10 1/м влажность осадка после фильтрования = 35 % динамическая вязкость фильтрата [1= 1,36-10- Па-с массовая концентрация суспензии х,п = 4 % , плотность жидкой фазы = 1250 кг/м , плотность твердой фазы = 2430 кг/м расход промывной жидкости Упр. ж = 1,5-10 М /КГ вязкость промывной жидкости 1пр = = 1,02-10- Па-с время сушки осадка = 80 с, вспомогательное время Тд = 1860 с. [c.105]


    При размещении узла установки фильтра в два этажа высота подъема суспензии Яр 3,5 м, общий коэффициент сопротивления трубопровода на линии подачи суспензии = 3,85. [c.105]

    Даны уравнения фильтрования и консолидации в условиях постоянного давления, постоянной скорости, а также переменных давлении и скорости [82], которые сопоставлены с данными опытов по разделению суспензий каолина и цемента. Приведены коэффициент фильтрования Оф=(Ьо— )/( о— 1) и коэффициент консолидации / =( 1—1)/(/,1— 2), где 1о — начальная толщина слоя суспензии, Ll — толщина слоя осадка в конце стадии фильтрования или в начале стадии консолидации, 2 — толщина слоя осадка в конце консолидации, I — толщина в любой момент времени [83]. Даны соотношения для 11ф и в зависимости от времени и условий проведения процесса. [c.69]

    Селективность действия мембран для обратного осмоса зависит от коэффициентов диффузии и растворимости компонентов раствора в материале мембраны, а также от электрических сил, формы и размера молекул, концентрации, температуры. Для перегородок селективность действия не имеет значения к ним предъявляется требование полного разделения суспензии с получением чистого фильтрата. [c.83]

    Применительно к процессам разделения суспензий при постоянной разности давлений, исходя из соотношения (111,31), выведены [108 обобщенные уравнения. Принято, что показатель степени Ь в этом уравнении может иметь любые значения в пределах от 2 до О, а коэффициент пропорциональности к характеризует сопротивление потоку фильтрата и сохраняет постоянную величину для данного процесса фильтрования. [c.98]

    В связи с данной моделью следует отметить отсутствие в ней микроскопических характеристик с одновременной необходимостью находить значения упомянутых коэффициентов для каждой суспензии. Обе эти особенности характерны для всех исследований, приведенных в данной главе. [c.336]

    Исследованы [370] фильтрационные свойства диатомита, древесной муки, силикагеля, летучей золы, сульфоугля (размер частиц 0,2—0,75 мм) с использованием суспензий гидроокисей алюминия и железа, которые разделялись на лабораторном фильтре типа воронки. Начальная толщина слоя вспомогательного вещества на фильтре составляла 60 мм при проведении серии опытов внешняя часть этого слоя толщиной 10 мм по окончании каждого опыта срезалась ножом. Получены данные о коэффициенте проницаемо- [c.356]

    Химические и физические свойства перерабатываемого материала, условия проведения процесса (температурный режим, значения и характер механических нагрузок) определяют выбор конструкционных материалов для изготовления всех элементов машины, контактирующих с суспензией, осадком и фугатом. Ряд параметров, характеризующих свойства суспензии, осадка и фугата, должен быть задай или найден экспериментально, так как эти параметры (например, плотность и вязкость суспензии и фугата, плотность осадка, его влажность, коэффициент трения ножа по осадку, угол естественного откоса осадка и т. д.) необходимы для расчета элементов коиструкции машины. [c.11]

    Далее определяют значения каждой деформации от действующих на элементы внешних и внутренних сил и моментов. После подстановки найденных значений деформаций в выражения (11.20) и решения этих уравнений определяют краевые силы и моменты. В качестве примера для наиболее часто встречающихся элементов ротора (плоской крышки, цилиндрической и конической обечайки), нагруженных центробежными силами, давлением вращающейся жидкости, краевыми силами и моментами, в табл. 11.2 приведены выражения для деформаций, в которых помимо указанных ранее приняты следующие обозначения р и р.,, — плотность материала ротора и жидкости, кг/м UJ — угловая скорость ротора, рад/с R — средний радиус оболочки, W, Е — модуль упругости, Па == (Гр-, — г1,)/г1т — коэффициент заполнения ротора суспензией s — толщина стенки оболочки, м /-да — расстояние от оси вращения ротора до внутренней поверхности жидкости, м k = 3(i — i )I [/ Rs коэффициент затухания влияния краевого эффекта в цилиндрической оболочке, см" /i2 0,707 — (2,25 — 2 i)/i/2 + 5,65 (1 — р,)/г/2 — функция для конической оболочки. [c.353]

    Здесь V — действительная производительность центрифуги, которая обычно определяется объемом жидкости (фильтрата, фугата), удаляемой из ротора, м /сек р — коэффициент, зависящий от степени заполнения осадком ротора фильтрующей центрифуги К — константа фильтрации, зависящая от свойств осадка и определяемая опытным путем [0-2] —коэффициент эффективности осадительной центрифуги [формулы (У-43) — (У-46)] Woo — скорость осаждения частиц разделяемой суспензии в иоле сил тяжести, м/сек [формулы (ИМ) — (П1-28)] 2 — параметр производительности, зависящий от типа центрифуги. [c.519]

    На практике выделение -парафинов может проводиться как в результате сорбции измельченным твердым карбамидом, обычно применяемым в виде суспензии в растворителе, так и путем смешения нефтепродукта с гомогенны. раствором карбамида, в результате чего из смеси выделяется белый сметанообразный осадок, после фильтрования и сушки превращающийся в кристаллическое вещество. Кристаллы комплекса обладают гексагональной структурой, в которой молекулы карбамида располагаются спиралеобразно и связываются за счет водородных связей между атомами кислорода и азота смежных молекул, повернутых друг относительно друга на 120° и образующих круглый в сечении канал. Важнейшая особенность структуры комплексов — строго фиксированный диаметр этого канала, лежащий в пределах (5-=-6)-10" мкм. Внутри канала легко могут располагаться линейные молекулы парафина (эффективный диаметр молекулы (3,8- -4,2)-10 мкм] и практически не размещаются молекулы разветвленных парафинов, ароматических углеводородов (эффективный диаметр молекулы около 6- 10 мкм) и т. д. Этим свойством карбамидный комплекс напоминает цеолит. По другим признакам аддукт близок к химическим соединениям. Так, карбамид реагирует с углеводородами в постоянном для каждого вещества мольном соотношении, медленно возрастающем с увеличением длины цепочки, причем для различных гомологических рядов эти соотношения также несколько отличаются. Величины мольных соотношений, хотя и представляющие собой дробные числа (табл, 5.23), напоминают стехио-метрические коэффициенты в уравнении закона действующих масс. С возрастанием длины цепочки увеличивается и теплота образования аддукта. Эго, в частности, проявляется в том, что высшие гомологи вытесняют более низкие 1.3 -аддукта. [c.315]


    Это уравнение описывает коэффициент трения в мягких гелях и суспензиях. [c.175]

    В случае, когда в жидкости добавлялись пузырьки газа или твердые частицы, наблюдалось умеренное улучшение теплообмена. Б [41] найдено, что теплоотдача увеличивается до 50% при вдуве пузырьков азота в турбулентный поток воды. Чтобы определить механизм улучшения теплообмена при введении твердых частиц в ламинарные потоки, авторы [42] изучали суспензии полистироловых шариков в масле. Наблюдалось максимальное увеличение коэффициентов теплоотдачи до 40%. [c.325]

    Потери давления при турбулентном движении можно определить по уравнению (6-64), причем при определении коэффициента трения X могут быть -использованы уравнения для вязких жидкостей. Однако для суспензий необходимо вводить в расчет вязкость только жидкой фазы. Для псевдопластичных жидкостей надежные методы расчета потери давления пока отсутствуют. [c.161]

    Центрифуга с ножевой разгрузкой осадка. При такой разгрузке последовательно подается суспензия, фугуется и снимается осадок. Смена и длительность операций регулируются специальным автоматическим устройством. Нож, срезающий осадок, управляется гидравлическим устройством. При небольшой ширине ротора осадок удаляется по наклонному желобу. Чем больше коэффициент трения осадка по поверхности желоба, тем круче. должен быть желоб. При большой ширине ротора осадок выводится с помощью тинека. [c.190]

    Эффективность перемешивания является характеристикой каче-стЕ.а процесса, которое оценивают в зависимости от технологического назначения перемешивания. При перемешивании для интенсифика-ци>[ химических реакций, тепловых и диффузионных процессов эффективность оценивают отношением коэффициентов скорости процессов, проводимых с перемешиванием и без перемешивания. Эффективность процессов получения суспензий и эмульсий характеризуется достигаемой степенью однородности единицы перемешиваемого объема жидкости и в каждом конкретном случае определяется целесообразной интенсивностью, требующей минимальных расходов энергии и времени на проведение процесса. Из двух аппаратов с мешалками более эффективно работает тот, в котором определенный технологический процесс достигается при более низкой затрате энергии. [c.266]

    Рассмотрено влияние переплетения нитей в ткани на проницаемость монофиламентных и полифиламентных тканей [436]. Обсуждено влияние структуры пор ткани на характер отложения осадка и условия образования сводиков над устьями пор. Отмечено, что результаты определения эквивалентного размера пор микроскопическим наблюдением, пузырьковым методом и измерением проницаемости для монофиламентных тканей согласуются лучше, чем для полифиламентных в последних тканях пористость более сложная и состоит из пористостей внутри волокон и вне волокон. Применительно к фильтрованию чистой жидкости (воды) через моно-филаментные ткани различного переплетения зависимость скорости потока от разности давлений выражена с использованием коэффициента расхода в особой форме и модифицированного числа Рейнольдса теоретические расчеты проницаемости полифиламентных тканей не достигают достаточного соответствия экспериментальным данным вследствие ряда существенных упрощений при выводе уравнений. Для суспензий с концентрацией более 20% [c.381]

    Высокая сопротивляемость истиранию делает мягкую резину особетю пригодной для аппаратов, работающих с жидкостями, содержащими в виде суспензий значительные количества взвешенных частиц (насосы, трубопроводы). На химических заводах применяют также резиновые подщипники. Такие иодщипники обладают хорошим сопротивлением истиранию и низким коэффициентом трения при смачивании водой поверхности резины, соприкасающейся с вращающимся валом. [c.440]

    Таким образом, первый реактор в каскаде должен работать при максимально возможной температуре. Реакторы интенсивного перемешивания позволяют достичь больших коэффициентов теплопередачи, однако и в них трудно развить большую поверхность теплопередачи на единицу объема. Увеличение же температуры теплоносителя связано с большими издержками, особенно при использовании в качестве теплоносителя водяного пара. Поэтому существует противоречие между требованием минимального объема для первого реактора для прямого гидрогеиолиза глюкозы и максимальной температуры в этом реакторе. Выход может быть найден в раздельном (предварительном) подогреве водорода и большей части растворителя перед подачей их в первый реактор в этом случае концентрированная суспензия катализатора в растворе углеводов должна подаваться в головной реактор отдельным дозировочным насосом без подогрева. К аналогичному выводу о необходимости раздельного ввода глюкозы в реактор гидрогено-лиза пришли Н. А. Васюнина и Ю. М. Ковкин [82], а также Э. М. Сульман [27] необходима проверка этого предложения в проточных условиях. [c.141]

    Перепад давления. Очень важно найти перепад давления между двумя точками в потоке многофазной системы. Если нужно обеспечить постоянный расход вещества в системе, то перепад давления определяет мощность перекачивающей системы. Примером такого рода требований может служить конструирование насосов для транспортировки суспензий по трубопроводу. Если, наоборот, неизменным является перепад давлений, существующий в системе, то зависимость между перепадом давления и результирующей скоростью системы важна для определения параметров, зависящих от скорости, таких, как коэффициент теплоотдачи, ограничения по плотности тепловых и массовых потоков и т. д. Для примера можно привести определение скорости циркуляции в вертикальном котле с естественной циркуляцией в дистилляционпой системе, где перепад давления (напор жидкости) фиксирован, а скорость циркуляции — зависимая переменная. Следует заметить, что ниже давление в системе будем обозначать р, а градиент давления в стационарных условиях р142, где г — расстояние по оси в направлении потока. [c.176]

    Пример 8-10. Рассчитать производительность и коэффициент заполнения осадком центрифуги АГ-1800 (см. пример 8-9) при разделении суспензии гипса с соотношением Т Ж = 1 3. Плотность жидкой фазы суспензии Рж = 1000 кг1м , плотность осадка Рос. = 1830 KzjM. , требуемая конечная влажность осадка Wg . = 20% вес. [c.319]

    В этих уравнениях р, — плотность суспензии, кг/м ускорение снободиого падения, м/о Л — внутренний радиус барабана, м 5 — толщина стсики обечайки, м Ф, , — функции /г 2 3 4 5 6 д — усилие ог механизмов отжима и среза осадка, Н/м М(-, — иг гибающий момент от веса барабана, Н-м 1-1 — коэффициент Пуассона. [c.178]

    Фторопласт-4 (политетрафторэтилен) при небольшом коэффициенте трения обладает недостаточными прочностью и износостойкостью, поэтому эффективно антифрикционные свойства фторопласта используются в качестве компонента металло-фторопластов для изготовления подшипников. Несущей основой металлофторопластового подшипника является лента из сталей 08кп или Юкп, покрытая с обеих сторон слоем меди М1 или латуни Л90. На ленте спекается высоко пористый (до 35%) бронзовый слой из сферического бронзового порошка (размер частиц 0,063—0,16 мм). Пропитка пористого слоя производится втиранием композиции, состоящей из 75% суспензии фторопласта 4ДВ (ТУ П-40—59) и 25% дисульфида молибдена. Толщина бронзового слоя в готовой ленте (ТУ 27-0 1-01—71) 0,35 мм, толщина фторопластового слоя 0,06 мм, ширина ленты 75— 100 мм, длина полос 500—2000 мм. Между общей толщиной ленты и толщиной стальной основы существует следую щая зависимость  [c.241]


Смотреть страницы где упоминается термин Коэффициент суспензий: [c.321]    [c.337]    [c.94]    [c.132]    [c.108]    [c.70]    [c.357]    [c.361]    [c.258]    [c.266]    [c.319]    [c.321]    [c.113]    [c.174]    [c.197]    [c.210]    [c.357]    [c.498]    [c.311]    [c.308]    [c.191]   
Свойства газов и жидкостей (1966) -- [ c.444 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент воспроизводимости свойств суспензи

Коэффициент вязкости однородной жидкости, эквивалентной суспензии

Коэффициент суспензий, определение

Суспензии



© 2025 chem21.info Реклама на сайте