Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота химических соединений

    На основании температур начала кристаллизации двухкомпонентной системы 1) постройте диаграмму фазового состояния (диаграмму плавкости) системы А —В 2) обозначьте точками / — жидкий расплав, содержащий а % вещества А при температуре Тй II — расплав, содержащий а % вещества А, находящийся в равновесии с кристаллами химического соединения III — систему, состоящую из твердого вещества А, находящегося в равновесии с расплавом, содержащим Ь % вещества А IV — равновесие фаз одинакового состава V — равновесие трех фаз 3) определите состав устойчивого химического соединения 4) определите качественный и количественный составы эвтек-тик 5) вычертите все типы кривых охлаждения, возможные для данной системы, укажите, каким составам на диаграмме плавкости эти кривые соответствуют 6) в каком фазовом состоянии находятся системы, содержащие с, е % вещества А при температуре Т Что произойдет с этими системами, если их охладить до температуры Т 7) определите число фаз и число условных термодинамических степеней свободы системы при эвтектической температуре и молярной доле компонента А 95 и 5 % 8) при какой температуре начнет отвердевать расплав, содержащий с % вещества А При какой температуре он отвердеет полностью Каков состав первых кристаллов 9) при какой температуре начнет плавиться система, содержащая й % вещества А При какой температуре она расплавится полностью Каков состав первых капель расплава 10) вычислите теплоты плавления веществ А и В 11) какой компонент и сколько его выкристаллизуется из системы, если 2 кг расплава, содержащего а % вещества А, охладить от Тх до Г,  [c.247]


    Теплоты образования химических соединений [c.62]

    Поскольку всегда измеряются только изменения энтальпии, величина энтальпии какого-либо химического соединения зависит от произвольного выбора начала отсчета. Хотя такое соглашение и не является общепринятым, удобно приравнять мольную энтальпию соединения при стандартных условиях к теплоте его образования из элементов при стандартных условиях. Остается еще произвольность в выборе агрегатного состояния элементов, но это обстоятельства не имеет значения, если принято условие, что агрегатное состояние данного элемента берется одним и тем же при расчете теплот образования всех включающих его соединений. [c.41]

    Стандартные теплоты образования табулированы. При этом для удобства расчетов во многих случаях вычисляют и помещают в таблицы стандартные теплоты образования химических соединений в таких агрегатных состояниях, которые неустойчивы (и даже невозможны) при стандартных условиях. Так, например, в таблицы включают теплоту образования водяного пара в гипотетическом состоянии идеального газа при 25 °С и 1 атм, равную —57 798 кал. [c.64]

    Закон Гесса дает возможность рассчитать теплоты множества различных реакций по минимальному числу теплот некоторых реакций. В качестве последних обычно принимают теплоты образования химических соединений. Теплотой образования соединения называется теплота образования (обычно при постоянном давлении) одного моля соединения и 3 соответствующих простых веществ. При этом считают, что простые вещества реагируют в виде той модификации и в том агрегатном состоянии, которые отвечают наиболее устойчивому состоянию элементов при данной температуре и при давлении 1 атм. [c.62]

    Процедурные знания — это сведения о совокупности конкретных процедур, этапов или шагов поиска целесообразных решений в новой ситуации, представленных либо на ЕЯ, либо на некотором формализованном языке (ФЯ). К процедурным знаниям в области химической технологии относятся, например, закон действия масс принцип Ле Шателье законы равновесия составов фаз гетерогенных систем законы сохранения массы, энергии, импульса и момента количества движения закон Гесса законы (начала) термодинамики физико-химические и технологические принципы наилучшего использования движущей силы ХТП, наиболее полного использования сырья и энергии в ХТС, наилучшего использования оборудования ХТС и др. алгоритмы расчета состава смесей веществ, расчета массы и объемов веществ, мольной теплоты образования соединений при химических реакциях системы уравнений математических моделей ХТП и ХТС алгоритмы анализа и оптимизации ХТП и ХТС тексты технологических регламентов и др. [c.32]


    Приведенные примеры показывают, что теплоты образования или теплоты сгорания служат основой для подсчета теплоты любой химической реакции. Значения этих теплот берут из справочников. Однако таблицы не могут охватить собой всего многообразия химических соединений (особенно соединений углерода), с которыми приходится встречаться в практике. Поэтому для вычисления теплот образования, теплот сгорания и теплот химических реакций иногда прибегают к так называемым теп-лотам диссоциации (энергии связи) атомов, входящих в состав данного химического соединения. [c.111]

    В целях сопоставления и использования для расчетов по закону Гесса, теплоты образования химических соединений вычисляются для стандартной температуры (25 °С, т. е. 298,15 °К) и давления 1 атм. Они часто называются стандартными теплотами образования и обозначаются [c.64]

    В Приложении П1 и IV приведены значения стандартных теплот образования некоторых химических соединений. [c.196]

    С помощью данных, представленных в табл. 8.1—8.3, можно рассчитать 1) теплоемкость вещества при любой температуре в интервале 298,15—1000 К (для На504 при 298,15—700 К) 2) теплоту образования соединения в конденсированном состоянии 3) низшую и высшую теплоты сгорания вещества 4) иа менение энтальпии соединения при его нагревании или охлаждении 5) термодинамические параметры химической реакции при любой температуре от 298,15 до 1000 К (тепловой эффект, изменение энтропии, изменение энергии Гиббса,, термодинамическую константу равновесия, степени превращения компонентов). [c.423]

    При образовании химического соединения поглощается или выделяется такое количество теплоты, какое выделяется или поглощается при его разложении на первоначальные составные части. [c.70]

    Разность между энтальпией моля чистого химического соединения и суммарной энтальпией хилшческпх элементов, пз которых оно состоит, называется теплотой образования вещества (АЯ ). Эта величина определяет изменение энергии, происходящее при соединении атомов в молекулу. Значение теилоты образования следует давать с указанием температуры, давления и агрегатного состояния веществ, которым оно соответствует. Давление 1 атм и темпе- [c.40]

    На практике выделение -парафинов может проводиться как в результате сорбции измельченным твердым карбамидом, обычно применяемым в виде суспензии в растворителе, так и путем смешения нефтепродукта с гомогенны. раствором карбамида, в результате чего из смеси выделяется белый сметанообразный осадок, после фильтрования и сушки превращающийся в кристаллическое вещество. Кристаллы комплекса обладают гексагональной структурой, в которой молекулы карбамида располагаются спиралеобразно и связываются за счет водородных связей между атомами кислорода и азота смежных молекул, повернутых друг относительно друга на 120° и образующих круглый в сечении канал. Важнейшая особенность структуры комплексов — строго фиксированный диаметр этого канала, лежащий в пределах (5-=-6)-10" мкм. Внутри канала легко могут располагаться линейные молекулы парафина (эффективный диаметр молекулы (3,8- -4,2)-10 мкм] и практически не размещаются молекулы разветвленных парафинов, ароматических углеводородов (эффективный диаметр молекулы около 6- 10 мкм) и т. д. Этим свойством карбамидный комплекс напоминает цеолит. По другим признакам аддукт близок к химическим соединениям. Так, карбамид реагирует с углеводородами в постоянном для каждого вещества мольном соотношении, медленно возрастающем с увеличением длины цепочки, причем для различных гомологических рядов эти соотношения также несколько отличаются. Величины мольных соотношений, хотя и представляющие собой дробные числа (табл, 5.23), напоминают стехио-метрические коэффициенты в уравнении закона действующих масс. С возрастанием длины цепочки увеличивается и теплота образования аддукта. Эго, в частности, проявляется в том, что высшие гомологи вытесняют более низкие 1.3 -аддукта. [c.315]

    Мольной теплотой образования химического соединения ДЯ/, кал1моль, называется теплота реакции образования одного моля этого соединения из простых веществ при стандартных условиях. Агрегатное состояние исходных веществ реакции должно быть постоянным. [c.28]

    Всс значения термодинамических функций в настоящее время приведены к единым, так называемым ста и д а рт н ы м условиям (/ = 25° С и Я = 1 ата) состояния системы. Величины термодинамических функци ) приведены в стандартных таблицах (см. табл. 22), которые являются очень удобными в пользовании и позволяют вести расчеты с наибольшей точностью. Эти таблицы содержат а) изменение тенлосодерлония АР (илн, что то же, теплоту образования изменение свободной энергии AF° химических соединений при стандартных условиях [c.161]

    Следовательно, определив теплоемкости вплоть до очень низких температур, а также измерив скрытые теплоты плавления и испарения, можно вычислить энтропию химического соединения в стандартных условиях, пользуясь уравнением (50). Интересующихся деталями подобного расчета мы отсылаем к главе III. [c.103]


    Практически используемые энергии химических связей существенно отличны от рассмотренных выше. Практическая энергия связи является той долей энергии, поглощаемой при полной диссоциации молекулы на свободные атомы, которая приходится на данную связь. Складывая величины таких энергий для всех химических связей в молекуле, получаем то же значение энергии (теплоты) образования молекулы из свободных атомов (атомной теплоты образования), которое использовали при расчете энергии связей. Путь расчета атомных теплот образования соединений был рассмотрен выше (стр. 64—65). Зная атомные теплоты образования соединений и используя закон Гесса, можно найти энергии связей. [c.68]

    Первый закон термодинамики утверждает, что при переходе из одного состояния в другое изменение энергии или энтальпии зависит только от самих этих состояний, а не от того, каким образом осуществляется переход между ними. Следовательно, теплота химической реакции не зависит от того, в одну или несколько стадий проводится эта реакция, а определяется лишь исходным состоянием реагентов и конечным состоянием продуктов. Это означает аддитивность теплот реакций если реакция А плюс реакция В дают реакцию С, то теплота реакции С может быть получена суммированием теплот реакций А и В. Указанное свойство аддитивности теплот реакций создает большую экономию при табулировании теплот реакций достаточно измерить только тепловые эффекты ограниченного набора реакций, из которых можно скомбинировать все остальные реакции. В качестве такого набора выбирают реакции образования всех соединений из образующих их элементов, находящихся в стандартном состоянии. [c.101]

    Экзотермический источник — химические реакции (горения, нейтрализации, большинство реакций синтеза химических соединений из простых веществ и др.) и физические превращения (растворение, конденсация, кристаллизация и др.), сопровождающиеся выделением теплоты. Количество выделяющейся при этом теплоты зависит от массы реагентов, их природы, агрегатного состояния исходных материалов и полученных иродуктов, типа реакции, глубины превращения н условий их осуществления. [c.52]

    Теплотой образования называют тепловой эффект реакции образования одного моля химического соединения из простых веществ, устойчивых при данных условиях. [c.47]

    Тепловой эффект образования химического соединения, диссоциирующего на ионы, определяется по теплотам образования ионов в растворе. Например, теплота образования иона SO4 представляет собой тепловой эффект реакции [c.93]

    В третьем случае (расплав III) некоторое количество a- aSiOg остается неиспользованным после того, как весь расплав израсходован на образование химического соединения, и по окончании кристаллизации химического соединения система состоит из двух фаз—кристаллов химического соединения и кристаллов компонента a-GaSi Од, которые не изменяются при дальнейшем охлаждении до 1190 °С. При этой температуре а-модификация aSiOj переходит в р-модификацию с выделением соответствующего количества теплоты. [c.387]

    На рис. V, 3 изображены изотермы теплоты смешения (Q) компонентов, объемного сжатия (ДУ) при смешении и вязкости (т]) растворов пиперидин— аллиловое горчичное масло ( зN5N S). Все свойства обнаруживают более или менее резкий излом в максимуме при отношении компонентов 1 1. Точка излома в максимуме, называемая сингулярной точкой, указывает на образование прочного химического соединения, содержащего компоненты в приведенном отношении. [c.166]

    Пользуясь таблицами, можно вычислить теплоту любой химической реакции в стандартных условиях. Для этого нужно из суммы теплот образования продуктов реакции вычесть сумму теплот образования исходных веществ. Практически это удобно делать, записав интересующую реакцию и написав под формулой каждого химического соединения стандартную теплоту его образования. Например  [c.64]

    Теплота образования. Эта категория химических реакций представляет особый интерес, так как их термодинамические параметры служат в настоящее время основой для подавляющего больщинства расчетов термодинамических параметров других реакций (см. 8). Они представляют собой весьма обширную группу реакций, для которых имеются достаточно надежные данные. Реакции этой категории более однородны по исходным веществам, так как для всего множества различных химических соединений число исходных простых веществ примерно равно числу химических элементов. Вместе с тем, хотя реакции образования из простых веществ всегда связаны с изменением валентного состояния элементов, сами эти изменения мало различаются, в особенности для однотипных соединений. [c.148]

    Для расчета теплот образования соединений из простых веществ, теплот сгорания, атомных теплот, теплот испарения, возгонки и других разработано большое число эмпирических методов, с которыми можно познакомиться в учебниках (М. X. Карапетьянц) или монографиях (В. А. Киреев) и в периодических изданиях и справочниках по химической термодинамике. [c.73]

    Точка 3 По линии СЕ охлаждение идет по закону Ньютона. На линии СЕ начинается кристаллизация химического соединения из расплана, причем, вследствие выделения скрытой теплоты кристаллизации вещества ЛВ, охлаждение пойдет с замедлением. Жидкая фаза будет по мере выпадения вещества АВ насыщаться компопеитом А, и, пако-пец, наступит такой момент, когда она будет насыщена относительно компонента А и соединения АВ. При этом будет кристаллизоваться эвтектика на линии ЕН при постоянной температуре. После полного затвердевания смеси охлаждение пойдет по закону Ньютона без всяких термических эффектов. [c.233]

    Тепловые эффекты химических реакций с участием органических соединений удобно вычислять по теплотам сгорания, которые легко определяются из опыта. Теплотой сгорания называется тепловой эффект при постоянном давлении реакции окисления кислородом одного моля химического соединения с образованием продуктов сгорания. В качестве продуктов сгорания элементов С, Н, N, S и С1 принимают С02(г), Н20(ж), N2(r), 50г(г) и НС1(г). [c.95]

    Как уже указывалось (стр. 93), по современным представлениям следует различать 1) обычную адсорбцию за счет сил притяжения и 2) хемосорбцию за счет химических валентных сил. Несмотря на то, что между обоими типами адсорбции нельзя провести резкой грани, во многих отношениях они значительно различаются. При обычной адсорбции газ или пар конденсируется по всей поверхности многослойно, выделяющаяся при этом теплота адсорбции невелика и составляет 2000—8000 тл1г-мол, и процесс обратим. В случаях хемосорбции образуется мономолекулярный слой, занимающий обычно не всю поверхность, а локализующийся на наиболее активных участках. Остальная часть поверхности при этом также сорбирует, но чаще всего лишь физически. Теплота хемосорбции может доходить до 200 000 кал г-мол, причем десорбция протекает с большим трудом, и часто вещество десорбируется химически измененным. При хемосорбции получаются настоящие двумерные химические соединения, поэтому их часто называют двумерными. Для образования таких соединений необходима некоторая энергия активации. [c.116]

    Химические термодинамические свойства разных веществ и параметры химических реакций приводятся как в физико-химических справочниках общего характера, так и в специальных термо-динамических. Фундаментальным справочником первой группы является шестое издание таблиц Лаидольта — Бернштейнавышедшее в период 1950—1961 гг. в четырех томах (22 книги), в которых ряд разделов посвящен величинам, характеризующим тепловые эффекты, равновесия и другие параметры химических реакций и фазовых переходов, а также термодинамические свойства химических соединений и простых веществ. Так, четвертая часть второго тома содержит данные по термодинамике химических реакций и соответствующим свойствам химических соединен и простых веществ по теплоемкости энтропии (5"), теплотам образова- [c.74]

    Если охлаждать расплав, содержащий 90% А1 и 10% Ni (фигуративная точка 3), то его кристаллизация начнется при температуре более высокой, чем эвтектическая температура. При 963 К из расплава данного состава начнет кристаллизоваться химическое соединение NiAls, состав которого отличается от состава расплава (химическое соединение содержит 58% А1 и 42% N1). Вследствие выделения теплоты кристаллизации скорость охлаждения системы уменьшается, на кривой охлаждения при 963 К появляется излом и кривая при дальнейшем охлаждении изменяется менее круто. По мере кристаллизации NiAla наблюдается замедленное понижение температуры (С = = 2—2+1 = 1) и изменение состава расплава до эвтектического. При эвтектической температуре кристаллизуется эвтектика, состоящая из кристаллов алюминия и химического соединения NiAls. На кривой охлаждения наблюдается температурная остановка, длительность которой меньше, чем для системы, отвечающей точке 2. [c.411]

    Изменения, происходящие в системе, при дальнейшем охлаждении зависят от состава исходного расплава. В первом случае (расплав I) после того как весь кристаллический a- aSiOj вновь растворится, получается система, состоящая только из двух фаз— расплава с и кристаллов химического соединения. Такая система обладает одной степенью свободы. Дальнейшее отнятие теплоты уже приводит к понижению температуры и к связанному с этим выделению следующих количеств кристаллов химического соединения. [c.387]

    Во втором случае (расплав И) при кристаллизации химического соединения полностью используются как расплав, так и кристаллы a- aSiOg, и система образует одну фазу—кристаллическое химическое соединение, состав которого не изменяется при дальнейшем отнятии теплоты. [c.387]

    Теплота растворейия зависит от концентрации химического соединения в растворе. Теплота, которая поглощается или выделяется при раствореи1Ш одного моля вещества в таком количестве растворителя, чтобы образовался раствор с определенной моляльностью т, называется интегральной теплотой растворения. [c.93]

    Теплопроизводительной способностью называют то количество тепла, которое выделяет 1 г горючего при его сжигании. Поскольку-нефть представляет собою сложное химическое соединение, теплота, получаемая при ее сжигании, равна сумме теплот, получаемых при сгорании отдельно составляющих ее элементов, минус теплота образования данного соединения из этих же элементов .  [c.62]

    Однако приближенное выполнение обоих равенств в той или иной степени возможно и в тех случаях, когда оба эти условия или одно из них выполняются приближенно. Последнее имеет место, например, при сопоставлении влияния температуры на теплоты образования некоторых близких между собой веществ. Для многих химических соединений теплоты образования из простых веществ в качестве основной составляющей содержат teплoтy образования при О К, которая нередко достигает 90—95%. и больше от теплоты образования при данной температуре. Изменения же их с температурой часто бывают относительно малы и для сходных веществ направлены в одну сторону. В таких случаях оба равенства (1,34) и (1,35) приближенно отражают фактические соотношения. [c.40]

    Теплоты образования и другие термодинамические величины можно вычислять методом сравнительного расчета для подобных химических соединений, пользуясь правилом, что в двух рядах подобных веществ теплоты образования и другие термодинамические величины меняются одинаковым образо.м. Метод предложен М. Лотье и М. X. Карапетьянцем. В качестве примера рассмотрим вычисление теплоты образования газообразного бромида магния, зная теп- [c.96]

Рис. 21. Определение теплот образования химических соединений по методу Лотье — Карапетьянца Рис. 21. Определение <a href="/info/970068">теплот образования химических соединений</a> по методу Лотье — Карапетьянца
    Как правило, сольваты менее прочны, чем обычные химические соединения. Однако в ряде случаев тепловой эффект сольватации превышает теплоту разрушения кристаллической решетки растворяемого вещества на отдельные частицы (АЯ,р,). Тогда растворение сопровождается выделением теплоты  [c.67]


Смотреть страницы где упоминается термин Теплота химических соединений: [c.425]    [c.64]    [c.66]    [c.386]    [c.213]    [c.111]    [c.413]    [c.93]   
Практикум по физической химии изд3 (1964) -- [ c.134 ]

Практикум по физической химии Изд 3 (1964) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Расчет тепловых эффектов химических реакций по стандартным теплотам образования или сгорания химических соединений

Реакции образования химических соединений из свободных атоАтомарная теплота образования и теплота атомизации

Реакции образования химических соединений из свободных атомов. Атомарная теплота образования и теплота атомизации

Теплота образования химических соединений

Теплота соединения

Теплота химический

Теплоты образования важнейших химических соединений при 20С и Р 1 ата

Теплоты образования важнейших химических соединений при 20С и нормальном давлении

Химическое соединение



© 2025 chem21.info Реклама на сайте