Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распыление в пламени

    Как-показали результаты проведенных работ, при температуре продуктов сгорания керосина приблизительно ЗОО" С ток ионизации представляет собой пульсирующую линию с отдельными ясно выраженными пиками, частота и амплитуда которых характеризуют количество и температуру отдельных объемов продуктов сгорания, проходящих через межэлектродный зазор. Осциллографическая запись тока ионизации (рис. 33) свидетельствует о наличии некоторой постоянной составляющей ионизационного тока, соответствующей общему уровню ионизации продуктов сгорания и их температуре. Кривая ионизационного тока, полученная для продуктов сгорания с температурой около 1000° С (см. рис. 33, А), не имеет отдельных ясно выраженных пиков тока ионизации, которые наблюдались при более низкой температуре. Исследование тока ионизации пульсирующего холодного пламени (—250° С) показывает (см. рис. 33, В), что пламя это представляет собой совокупность отдельных гор щих объемов пара, количество которых не остается постоянным во времени в каждой данной точке факела. Осциллографирование тока ионизации при воспламенении и горении распыленного топлива Б турбулентном потоке воздуха при различных условиях дает в общем одинаковую картину (см. рис. 33, Г) с тремя четко выраженными областями, характерными для этого процесса областью первоначального зажигания факела, областью распространения пламени от начального очага горения по всему объему факела и областью установившегося горения. В начальный момент времени, когда в холодной топливо-воздушной смеси происходит электрический заряд, воспламеняющий эту смесь, датчик регистрирует отдельные всплески ионизационного тока, источником которого является сам электрический заряд (линия / на рис. 33). О воспламенении топлива можно судить по линии динамического напора воздуха (линия, 3), которая в этот момент имеет значительный подъем. В последующий период происходит распространение пламени от начального очага по всему объему факела, о чем свидетельствует изменение характера кривой тока ионизации и динамического напора воздушного потока. [c.68]


    К органическим растворителям предъявлялись следующие требования растворитель не должен давать большого собственного поглощения или излучения света при его распылении пламя должно оставаться стабильным физические свойства растворителя должны быть такими, чтобы не ухудшать процесс распыления растворитель должен иметь низкую растворимость в воде внутрикомплексные соединения определяемых элементов должны быть хорошо растворимы и устойчивы в органической фазе. [c.257]

    Горелки типа ФГМ работают бесшумно и в отличие от форсунок ГНФ с паровым распылением дают более короткое пламя. [c.56]

    Выполнение работы. Построение градуировочного графика. Включают прибор, устанавливают в рабочее положение лампу с полым катодом на медь и дают прогреться электронной системе в течение 15—30 мин. Доводят разрядный ток лампы до значения, указанного в инструкции. Устанавливают необходимые усиления, напряжения для фотоумножителя и постоянной времени. Выводят на щель монохроматора аналитическую линию меди 324,7 нм по максимальному отклонению стрелки измерительного прибора. Устанавливают измерительную стрелку на 00 по шкале пропускания Т, или на О по шкале поглощения А, изменяя ширину щели. Ширина щели не должна превышать 0,1 мм. В противном случае увеличивают напряжение тока для фотоумножителя или степень усиления. Устанавливают по ротаметрам вначале нужный расход воздуха (480 л/ч), затем пропан-бутановой смеси и поджигают пламя. Поджиг начинают несколько раньше, чем подачу горючего газа. Проверяют работу распылителя и стабильность пламени. Внут--ренний конус пламени должен иметь минимальную высоту при сохранении зеленовато-голубой окраски. Корректируют нуль прибора при распылении в пламя дистиллированной воды. Поочередно фотометрируют стандартные растворы не менее трех раз каждый, начиная с наименее концентрированного. После каждого стандартного раствора устанавливают нулевое поглощение прибора по дистиллированной воде. По результатам измерения абсорбции стандартных растворов строят градуировочный график в координатах абсорбция — концентрация меди (в мкг/мл). [c.51]

    Пламя распыленного жидкого горючего определяется в основном движением и горением отдельных капель и условиями их взаимодействия. Ход процесса горения зависит от гидродинамических факторов, температуры и состава окружающей среды, кинетических условий. При обтекании капель газовым потоком тепло- и массообмен различен на поверхности капель. На условия обтекания капель влияет изменение плотности газа вследствие горения и теплообмена. [c.34]


    Форсунка Карабина ФК-VI наиболее предпочтительна перед форсунками других конструкций для установки на печах и топках, потому что она дает короткое, широкое, ровное, без пульсаций, незатухающее пламя. За счет того, что через форсунку подают весь или почти весь воздух, необходимый для горения, обеспечивается смесеобразование и создаются наиболее благоприятные условия для полного сгорания топлива. Несмотря на более низкое давление распылителя достигается хорошее качество распыления. [c.175]

    Способы введения присадок различны они могут подаваться в виде суспензии, пасты, в водном растворе, растворяться в топливе или впрыскиваться в виде тонко распыленных частиц в пламя. [c.332]

    Интенсивность резонансного излучения измеряют дважды — до распыления анализируемого образца в пламя и в момент его распыления. Разность этих двух отсчетов и определяет значение аналитического сигнала. [c.144]

    Такой метод подачи растворов в пламя используется в подавляющем большинстве современных атомно-абсорбционных спектрофотометров. Максимум абсорбции наблюдается при расходе растворов 3—6 см мин. Однако эффективность распыления при этом составляет не более 10%. Более 90% раствора не используется и уходит в дренаж. [c.149]

    Распыляют в пламя горелки растворы эталонов в порядке возрастания концентрации примеси и записывают значения атомного поглощения А. После промывания горелки распылением дистиллированной воды измеряют атомное поглощение контрольного раствора. Строят. график зависимости величины атомного поглощения А от концентрации определяемого элемента (мкг/мл). По графику находят содержание примеси в контрольной задаче (мкг/мл). [c.38]

    Атомно-абсорбционный анализ (ААА) является одним из наиболее распространенных методов аналитической химии. Предварительная подготовка анализируемой пробы аналогична этой операции в пламенной фотометрии перевод пробы в раствор, распыление и подача аэрозолей в пламя. Растворитель испаряется, соли разлагаются, а металлы переходят [c.647]

    При распылении анализируемого раствора в пламя происходят следующие процессы. Растворитель испаряется, и образуется аэрозоль твердые частицы — газ. Затем происходит частичное испарение частиц и диссоциация их на нейтральные атомы. Некоторые атомы вступают в реакции с другими компонентами, находящимися в пламени. Часть атомов в пламени возбуждается при возвращении в исходное невозбужденное состояние атомы излучают свет. [c.373]

    Существуют пламенные фотометры двух типов. Простейший состоит из приспособления для распыления раствора в пламя, фильтра излучения и фотоэлемента, соединенного с гальванометром (рис. Д. 153). С помощью этого прибора можно определять щелочные и щелочноземельные металлы с погрешностью 2%. Высокая точность анализа объясняется тем, что атомы [c.375]

    В методе устраняются помехи от присутствия посторонних элементов, поскольку они оказывают одинаковое влияние на оба элемента. То же относится и к влиянию различных температур пламени и способа распыления раствора в пламя. [c.377]

    Имеющуюся пробу (чаще всего в виде жидкости, раствора) вводят в пламя в виде аэрозоля, используя для распыления газ — окислитель. Если пламя ламинарное, то установка состоит из распылителя, смесителя (для смешивания горючего газа и окислителя) и горелки (непрямое распыление). В случае турбулентного пламени распылитель и горелка составляют одно целое (прямое распыление). В зависимости от соотношения горючий газ/окислитель интенсивность излучения пламени проходит через максимум, который необходимо определять в предварительном опыте. Пламя характеризуется особенно высокой стабильностью возбуждения. [c.187]

    Поглощение Е пропорционально числу поглощающих атомов N. Свободные атомы, необходимые для осуществления анализа, получают распылением раствора пробы в виде аэрозоля в газовое пламя. При воспроизводимых условиях с, т. е. поглощение пропорционально концентрации. По уравнению (2.3.8) чувствительность обратно пропорциональна константе к [уравнение (5.2.10)] или коэффициенту поглощения к [уравнение (5.2.3)). Ввиду существующей связи между коэффициентом поглощения к и силой осциллятора / (ср. табл. 5.5) последний можно привлечь для оценки чувствительности определения. [c.196]

    Раствор анализируемого вещества распыляется в пламя горелки чаще всего пневматическим способом. Для ламинарных пламен используется система распыления, состоящая из распылителя и распылительной камеры, в которой аэрозоль гомогенизируется, причем крупные капли сепарируются [c.57]

    Анализируемые вещества вводят в пламя главным образом в виде растворов, распыленных в струе воздуха или кислорода. На рис. 54 приведена схема установки для питания пламени и введения в него раствора. р с 53 горелка [c.81]

    Металлизация — это нанесение металлических покрытий на поверхность изделия распылением жидкого металла. Проволока металла, который наносится в качестве защитного слоя, подается в ацетиленокислородное пламя, в дуговой или плазменный разряд — металл плавится и частично испаряется. Мельчайшие капли и пары металла струей газа транспортируются на поверхность изделия и кристаллизуются на ней. Поверхность изделия должна быть тщательно очищена, так как иначе не будет прочного сцепления нанесенного слоя с металлом изделия. [c.527]


    Прямая теплоотдачи касается кривой тепловыделения в точке С и пересекает ее в точке Г. Известно, что условия касания линий тепловыделения и теплоотдачи в точке С есть условия самовоспламенения. В точке Г создается тепловое равновесие и совершается процесс горения, В точках, лежащих левее точки Г по кривой горение хотя и совершается, но является очень неустойчивым, Существующее в них тепловое равновесие легко может >быть нарушено, и тогда горение прекратится. Так, если увеличить теплоотдачу в зоне горения путем введения распыленной воды в пламя, то вследствие понижения температуры зоны горения до 1 тепловое равновесие переместится в точку касания П. [c.218]

    Эффект тушения распыленной струей зависит также от положения распылителя относительно зоны горения. Если распылитель расположен выше самой верхней точки зоны горения пламени), тушение не наступает, так как все частицы с диаметром меньше 100 (1 испаряются в потоке горячих продуктов горения и уносятся в виде пара в атмосферу. Опыты показали, что наиболее целесообразно располагать распылитель в верхней точке пламени, так, чтобы струя входила в его объем. При этом в начале тушения высота пламени резко увеличивается, а затем уменьщается, п пламя располагается под факелом распыленной струи или гаснет. [c.227]

    Диффузионные пламена газа (или распыленного твердого, или жидкого горючего) широко применяются в промышленных топках. Изучение диффузионных пламен представляет интерес также при разработке методов борьбы с пожарами в нефтехранилищах и т. п. Хотя в технике в большинстве случаев приходится иметь дело с турбулентными диффузионными пламенами, значительная часть научных работ относится к ламинарным диффузионным пламенам, более доступным для теоретического анализа и лабораторных исследований. Для конденсированных смесей, где размеры частиц компонентов малы, интерес представляют лишь ламинарные диффузионные пламена. [c.42]

    Содержание остальных глав книги в меньшей степени определяется педагогическими соображениями. В главе 7 рассматриваются турбулентные пламена, что связано с их большим практическим значением. В главе 8 проводится краткий анализ классической задачи о воспламенении, использующий понятие о тепловых потерях. В главе 9 излагаются основы теории стабильного и нестабильного горения в ракетных двигателях твердого и жидкого топлива. В главе 10 приводится пример подробного теоретического анализа одной частной задачи горения (горения капли унитарного топлива), результаты сравниваются с экспериментом. Полученные в главах 3 и 10 результаты применяются в главе 2, где излагается теория горения распыленного топлива. Изложение ведется применительно к за- [c.36]

Рис. 7. Повышение чувствительност i определения золота при распылении , пламя его растворов в органических растворителях Рис. 7. <a href="/info/250532">Повышение чувствительност</a> i <a href="/info/73907">определения золота</a> при распылении , пламя его растворов в органических растворителях
    Подобные установки рассчитывают из условия равномерного орошения защищаемой поверхности металлических конструкций распыленной водой. Проведенными автором опытами установлен удельный расход распыленной воды для орошения стальных конструкций оросителями эвольвентного типа. НижёГприведен удельный расход воды [в л/(м -с)] при одностороннем орошении стальной конструкции, помещенной в пламя бензина  [c.185]

    К топливным форсункам предъявляют следующие основные требования 1) тонкое и равномерное распыление топлива 2) хорошее смесеобразование топлива с воздухом в самой форсунке или непосредственно за нею в фурме до выхода смеси в камеру горения 3) удобное, тонкое и легкое управление и регулирование расхода топлива с сохранением заданного пропорционирования топливо—воздух и максимальным использованием энергии распылителя во все периоды регулирования 4) устойчивое пламя заданной формы и длины 5) прочность и простота конструкции 6) надежность, удобство в эксплуатации 7) отсутствие подтеков, незасоряемость 8) легкость [c.171]

    Косвенное экстракционно-пламеннофотометрическое определение кадмия основано на экстракции МИБК соли щелочного металла иодидкадмиевой кислоты, распылении экстракта в низкотемпературное пламя и фотометрировании излучения щелочного металла. В качестве комплексообразующего реагента при определении кадмия используют иодид лития, имеющий низкую собственную растворимость в органической фазе данной экстракционной системы и, хотя его концентрация в водной фазе велика влиянием реагента на аналитический сигнал при определении микрограммовых концентраций кадмия можно пренебречь. Кроме того интерференционные фильтры пламенных фотометров имеют высокие факторы специфичности на литий. Интенсивность излучения щелочного металла линейно пропорциональна концентрации кадмия в водной фазе. Градуировочный график строят в координатах показания прибора — концентрация кадмия в стандартных растворах. Предел обнаружения кадмия 1 мкг/мл. Воспроизводимость 3% (отн.). [c.46]

    Вода и водяной пар. Вода — наиболее распространенное сред ство тушения пoжaJ)oв. Ее применяют в виде компактной струи под давлением и тонкораспыленной струи. При небольших очагах пожара сильные компактные струи сбивают пламя, однако следует помнить о возможности растекания горящей жидкости. Жидкие продукты, особенно не смешивающиеся с водой, эффективнее тушить распыленной струей воды. В этом случае происходит интенсивное парообразование и охлаждение горящей жидкости и пламени пузырьки пара в свою очередь образуют с жидкостью негорючую эмульсию, которая покрывает ее поверхность, и горение прекращается  [c.220]

    Для выяснения вопроса о том, на какой стадии происходит образование термостойкого соединения определяемого элемента, разработан метод двух распылителей, сущность которого заключается в том, что одновременно с аэрозолем, содержащим определяемое вещество, и пламя вводят постороннее вещество через другой распылитель. Если воздействие постороннего вещества на наблюдаемый сигнал определяемого элемента будет точно таким же, как и п )и добавлении его непосредственно к анализируемому раствору, то, следовательно, это постороннее вещество влияет иа процессы образования термостойких соединений в газах пламени. В противном случае оно оказывает влияние только на процессы распыления и испарения, от которых зависит количество определяемого вещества в нламенп. [c.64]

    Методы введения растворов. Распыление растворов — самый удобный и распространенный метод введения вещества в пламя. При работе с электрическими источниками света растворы применяют реже. Обычно к ним прибегают, когда при работе с твердыми пробами слишком низка чувствительность анализа или не удается устранить в нужной степерш влияние состава и структуры образца на результаты. При введении растворов отсутствуют почти все те сложные процессы, которые именэт место при работе с твердыми образцами. Переход к растворам разрушает структуру пробы. Остается только влияние молекулярного состаоа пробы на результаты анализа. Поэтому при переводе пробы в раствор стараются получать для каждого элемента всегда одно и то же молекулярное соединение. [c.254]

    Обычно светящееся пламя образуется при сжигании жидкого топлива или угольной пыли. Чем выше соотношение С/Н в исходном жидком топливе и чем ниже его испаряемость, характеризуемая температурой кипения, тем более склонно данное топливо к сажеоб-разованию. Кроме сажистых частиц, в мазутном пламени могут содержаться коксовые частицы, образующиеся в результате крекинга крупных капель распыленного топлива. Газовые пламена могут быть светящимися при недостатке воздуха нлн прп плохом перемешивании углеводородного газа с воздухом в корне факела. Крекинг углеводородов происходит лишь при достаточно большом поперечном сечении горящей струи если это условие не соблюдается, происходит так называемая аэрация пламени за счет диффузии окислителя с поверхности факела в центральную (сердцевинную) часть струи. [c.56]

    В серийно выпускаемых сушильных установках дизельное топливо сжигается в жидкой фазе, за исключением установки СТ321, где керосин предварительно в специальном испарителе (рекуператорном теплообменнике) превращается в пар, а затем сжигается в паровой фазе. В установках, где сжигается дизельное топливо, оно поступает в горелку механического распыления под давлением (или самотеком), распыляется в скоростном потоке принудительно подаваемого в горелку воздуха, смешивается с ним и сгорает в кольцевом пространстве между корпусом печи и трубопроводом. Пламя под напором нагнетаемого воздуха совершает круговое движение вокруг трубопровода, нагревает и сушит его. Продукты сгорания удаляются в атмосферу через открытые торцы печи. Температура пламени в кольцевом пространстве с увеличением расстояния от горелки падает, и если у [c.47]

    Воду для тушения пожаров применяют в виде цельных, распыленных и мелкораспыленных струй. Цельные (компактные) струи механически сбивают пламя, а также их используют в случаях, когда невозможно приблизиться к очагу пожара и для подачи в большом количестве. Распыление струи воды, имеющее хороший эффект тушения в закрытых объемах, используют для экранирования лучистой энергии пламени, так как оно отбирает значительное количество тепловой энергии от очага пожара на испарение. Мелкораспыленные струи воды имеют свойство производить осаждение дыма при горении в задымленных помещениях и быстрее превращаются в пар. Пар, разбавляя воздух, снижает процентное содержание в нем кислорода и этим опособст-вует прекращению горения. [c.197]

    К форсункам с независимым двойным подводом воздуха относятся форсунка С. С. Бермана (рис. 45), Златоустовского металлургического завода (конструкции Евтютова, рис. 46) и форсунка конструкции Серп и молот — Стальпроект (см. рис. 33). Независимое регулирование каждого подвода (ступени) распыления является важнейшей особенностью этих форсунок. В период завалки и плавления путем полного включения обеих ступеней распыления достигается сильно светящееся, короткое, острое (режущее) пламя, а частичным или полным выключением второй ступени распыления достигается любая степень уменьшения активности, а также увеличения длины и настильности факела в остальные периоды плавки все этапы регулирования эффективности факела (в соответствии с периодами плавки) можно провести только при помощи вентилей, вынесенных в удобное для наблюдения за плавкой место. [c.94]

    К форсункам с независимым двойным подводом воздуха относят форсунки Бермана (рис. 62, а), Златоустовского металлургического завода (конструкции Евтютова, рис. 62, б) и форсунку конструкции Серп и молот — Стальпроект (см. рис. 48). Независимое регулирование каждого подвода (ступени) распыления является важнейшей особенностью этих форсунок. Б период завалки и плавления путем полного включения обеих ступеней распыления достигается сильно светящееся, короткое, острое пламя, а частичным или полным выключением второй ступени распыления достигается любая степень уменьшения активности, а также увеличение длины и настильности факела в остальные периоды плавки. [c.152]

    Окрашивание пламени. Соли таллия окрашивают бесцветное пламя горелки в интенсивный и характерный зеленый цвет. По этой окраске удается обнаружить до 0,1 мг таллия в пробе [510, 710] по другим данным зеленая окраска пламени замечается даже три 0,02 у таллия [609, 612, 912]. При применении спектральных пр иборов удается обнаруживать 0,001 у таллия в пробе [351]. Чувствительность зависит от наблюдаемой линии таллия в его спектре. Так, при распылении раствора соли талдия в пламени ацетилена можно открыть этот элемент прн следующих концентрациях [632]  [c.55]

    Чувствительность определения ЗЬ с применением пламенных атомизаторов в сильной мере зависит от совершенства используемого прибора, окислительно-восстановительных свойств пламени, высоты просвечиваемой зоны, геометрии горелки и ряда других факторов. Указывается [1391], что при использовании воздушноацетиленового пламени и спектрофотометра Тектрон АА1000 и просвечивания пламени светом лампы с сурьмяным полым катодом на расстоянии 1,5—2 мм от края горелки чувствительность определения ЗЬ в расчете на 1% поглош,ения света для линии 231,15 нм составляет 1,3 мкг 1мл и для линии 217,58 нм — 0,6А мкг/мл. Мостин и Куннингем [1354] считают, что при прохождении пучка света от лампы с сурьмянным полым катодом через воздушно-ацетиленовое пламя на расстоянии 4—10 мм выше уровня горелки достигается наиболее высокая чувствительность определения ЗЬ (спектрофотометр Перкин-Элмер 303, ток полого катода 20 ма, ширина щели монохроматора 1 мм, скорость распыления анализируемого раствора 3,5 мл/мин), которая составляет (на 1% поглощения света) 1,4 мкг/мл для линии 217,58 нм и 2,0 мкг/мл — для линии 231,15 нм. [c.89]


Смотреть страницы где упоминается термин Распыление в пламени: [c.153]    [c.104]    [c.323]    [c.38]    [c.376]    [c.148]    [c.150]    [c.150]    [c.228]    [c.597]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.681 , c.684 ]




ПОИСК





Смотрите так же термины и статьи:

Распыление



© 2025 chem21.info Реклама на сайте