Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции к окиси углерода воды или органических

    Этилен образуется из элементов (водорода и углерода) при атмосферном давлении и при очень высоких температурах (около 2000° С) 1141]. Кроме того, в большем или меньшем количестве он образуется наряду с другими углеводородами, главным образом метаном, этаном и пропиленом, нри всех высокотемпературных процессах расщепления насыщенных и ненасыщенных углеводородов и других органических соединений. По этой причине этилен всегда содержится в светильном газе [142], генераторном водяном газе и в других газообразных продуктах высокотемпературных процессов. Такие газовые смеси обычно не применяются для получения этилена из-за невысокого содержания в них этого углеводорода. Зато значи-гельным источником этилена являются газы, выделяющиеся при высокотемпературной переработке нефти и некоторых продуктов нефтяной промышленности. Особенно при газофазном крекинге (так называемый гиро-процесс ) [143], при котором пары нефти в смеси с парами воды пропускаются через контактную массу (в частности, через окись железа) при температуре 550—600°, в результате чего получается смесь газообразных углеводородов с содержанием этилена до 27% [144, 145]. Этилен образуется также в большом количестве при пиролизе природного газа. Па выход этилена большое влияние оказывают условия реакции. Реакционная смесь, получаемая путем пиролиза природного газа при 880°, содержит около 30% этилена [146]. [c.38]


    Перекиси и нитраты выделяют при прокаливании кислород карбонаты (кроме карбонатов щелочных металлов) — СО2 органические соединения разлагаются, образуя уголь, двуокись и окись углерода, воду и продукты сухой перегонки с характерным запахом. Если при прокаливании выделяется вода, то определите при помощи лакмусовой бумаги реакцию водяных капель, конденсировавшихся в верхней части трубки щелочная реакция воды указывает на содержание аммонийных солей или содержащих азот органических веществ, кислая — на присутствие легко разлагающихся солей сильны.х кислот. [c.64]

    При реакции этана с атомами кислорода, полученными из паров воды, образуются формальдегид, этиловый спирт, метан, окись углерода, углекислый газ, этилен и следы уксусного альдегида и органической перекиси. [c.142]

    Аналогично свойства многих неорганических молекул можно изменить при их координации с металлом. Наиболее доступная из всех молекул — молекула воды — может стать при подобной координации сильной кислотой. Совсем недавно стали известны примеры комплексов, в которых с кобальтом, иридием, рутением координированы молекулы кислорода и азота, но влияние координации на эти молекулы пока не изучено. Окись углерода настолько активируется при координации, что способна затем вступить в целый ряд реакций с органическими молекулами, часть из которых, подобно реакции гидроформилирования, стала промышленно важной. [c.9]

    Выше 120° С с повышением температуры гидрирование усиливается, а гидрополимеризация уменьшается при одновременном снижении содержания более высокомолекулярных углеводородов в конечных продуктах. Кислород вступает в реакцию при 100° С на 80—90% при соотношении в исходном газе этилена и водорода, равном 1 1, и на 30—50% при соотношении 2—4 1, превращаясь в основном в воду и окись углерода. Образуются также в небольших количествах перекись водорода и органические перекиси. С повышением температуры реакции выход воды повышается, а окиси углерода падает. Показано, что ни окись углерода, ни вода не инициируют реакцию Оз-гидрополимеризации олефинов. Можно полагать, что истинными инициаторами этой реакции являются поверхностные активные формы, возникающие из органических перекисных соединений. [c.86]

    Очистка карбидного ацетилена от примесей. При разложении карбида кальция водой одновременно с основной реакцией, продуктами которой являются высококонцентрированный ацетилен и гидрат оки. и кальция, протекают реакции разложения содержащихся в карбиде примесей (фосфористого, сернистого и кремнистого кальция, азотистого алюминия и других соединений). В результате этих побочных реакций технический ацетилен содержит обычно в качестве примесей сероводород и органические сернистые соединения, фосфористый водород и другие фосфористые соединения, аммиак, кремневодороды (силаны), а также водород, окись углерода, мышьяковистые соединения. Кроме того, в качестве основной примеси в карбидном ацетилене присутствует то или иное количество водяных паров (в зависимости от температуры генерирования ацетилена) и воздуха. Содержание примесей в ацетилене зависит главным образом от качества исходного карбида кальция и от способа его разложения. При получении ацетилена в мокрых генераторах, при сравнительно низких температурах (до 50 °С), получается газ с содержанием примесей в 4—5 раз меньше, чем при получении его в сухих генераторах при более высокой температуре. [c.51]


    По своему химическому существу и по характеру влияния на технические свойства конечных продуктов реакция образования кислородных мостиков между молекулами смолы во время окисления битумов напоминает процесс вулканизации каучука серой. И в том и в другом случае идет образование трехмерных структур, в результате чего продукт становится более твердым, менее растворимым, менее мягким и химически более стойким. В зависимости от глубины этого процесса можно получить технические битумы со свойствами, варьирующими в весьма широких пределах — от полужидких текучих продуктов до твердых хрупких асфальтенов. Сравнительно небольшое количество кислорода остается связанным в окисленном битуме, большая же часть его идет на образование летучих продуктов окисления (вода, окись и двуокись углерода, органические кислородсодержащие соединения). Характер распределения кислорода в продуктах окисления гудрона и крекинг-остатка (при 275° С) на разных стадиях процесса приведен на рис. 20. Окислительная дегидрогенизация сырья, сопровождающаяся образованием воды, является основной реакцией, потребляющей в случае окисления гудрона 90% в начальной стадии и 69% в конечной общего расхода кислорода. Доля других кислородсодержащих соединений в потреблении кислорода значительно возрастает к концу процесса (31% для гудрона и 42% для крекинг-остатка), когда интенсивность окислительной дегидрогенизации постепенно ослабляется [46]. [c.135]

    Изучение окисления окиси этилена на серебре показало, что она превращается в двуокись углерода и воду, но количества СО2 и Н2О не эквивалентны израсходованной окиси этилена, и это заставило предположить образование органического остатка X на поверхностя серебра. Кроме того, при пропускании окиси этилена над серебром в продуктах реакции был обнаружен этилен, который мог образоваться при разложении окиси этилена. По приведенной выше схеме предполагаются разные пути превращения этилена этилен окисляется в окись этилена (реакция 3), которая изомеризуется в ацетальдегид (реакция 6) и адсорбированный остаток X (реакция 7). Последний разлагается на этилен и кислород (3) и окисляется в СО2 и Н2О (10). Этилен может превратиться в продукты глубокого окисления, минуя стадию окиси этилена,— путем образования (2) и разложения (5) формальдегида. Ацетальдегид, образующийся из окиси этилена, также превращается в продукты глубокого окисления (9). [c.76]

    Другая большая заслуга Гей-Люссака состоит в том, что он ввел в аналитическую химию объемные методы которые имели большую важность как для чистой, так и для прикладной химии. В своем Наставлении по испытанию мокрым путем материалов, содержащих серебро (1832) Гей-Люссак оригинально излагает хлорометрию и алкалиметрию уже разработанные им в 1824 и 1828 гг. соответственно, а также описывает объемные методы определения хлора и серебра методом осаждения. Вместе с Тенаром Гей-Люссак ввел способ анализа органических соединений с применением хлората калия в качестве окислителя, используя который можно по количеству полученных угольного ангидрида и воды вычислить количество углерода, водорода и кислорода в соединении. Этот метод, связанный с бурной реакцией, был видоизменен, II впоследствии (1815) Гей-Люссак вместо хлората в качестве окислителя стал применять окись меди. Разработанные им методы проложили путь для элементарного анализа органических веществ и затем привели Либиха к открытию его известного способа, применяемого и в настоящее время в исследовательских лабораториях. [c.180]

    В отличие от реакции окисления изобутана, направленной п сторону образования перекисей, было найдено, что окисление и юпана и бутана (отношение углеводорода к кислороду 9 1, температура около 450°С, время контакта — 4 сек) приводит к получению смеси продуктов, содержащей органические перекиси, перекись водорода, альдегиды, спирты, окись и двуокись углерода, воду, олефины и водород . Органические перекиси в этом случае состоят, вероятнее всего, йз оксигидроперекисей и диоксиперекисей, образующихся в результате взаимодействия 1 рисутствующих в окисляемой среде альдегидов (например, формальдегида) и перекиси водорода. В более поздней работе описан способ превращения этана в гидроперекись путем окисления при 10—80° С под действием ультрафиолетового излучения в присутствии паров ртути, цинка или кадмия в качестве [c.20]

    Актавный катализатор для синтеза метанола из окиси углерода и водо рода при повышенной температуре и давлении 150 ат, с выходом 200 —250 г метанола на 1 см катализатора в час готовят следуюнщм образом безводную окись меди хорошо перемешивают с большим количеством окиси цинка в пропорции 4 части окиси меди на 96 частей окиси цинка. Раствор солей цинка и меди, например нитратов или солей органических кислот, обрабатывают кипящим раствором щелочи, осадок фильтруют, высушивают и восстанавливают при обычном давлении водородом или окисью углерода при наиболее низкой температуре во избежание местных перегревов [408]. Метаноловый катализатор можно получить из углекислого цинка или двууглекислого цинка, применяя хромовую кислоту [216]. Окись цинка, катализирующая органические реакции, получается также путем введения смеси окиси цинка и окиси хрома в раствор азотнокислого аммония и нагревания этой массы [88]. [c.295]


    Метиленовый голубой, как и многие другие красители, при облучении без доступа воздуха в водном растворе, содержащем избыточное количество некоторых органических веществ, обесцвечивается с достаточно высоким выходом. Эта реакция подобна той, которая наблюдается при действии видимого света. К органическим веществам, оказывающим усиливающее действие на этот эффект в условиях действия излучений с высокой энергией, относятся альбумин [540], бензоат [037, 040, Н43, 594], этиловый спирт [040, Н43, 594], глюкоза [С78, 010, Р67], соли молочной [040, Н43] и муравьиной кислот, сИ-ала-нин, фенил-р-аланин [Н43] и окись углерода [С107]. Тот же эффект имеет место в геле, содержащем метиленовый голубой и бензоат. Эта система была предложена в качестве дозиметрической [037, 039]. После прекращения облучения происходит частичное восстановление окраски раствора, обусловленное, очевидно, обратным окислением продуктов радиолиза красителя перекисью водорода, входящей в состав молекулярных продуктов радиолиза воды [040]. Если открыть доступ кислороду в сосуд с облученным раствором, то произойдет почти полное возвращение первоначальной окраски последнего. Это показывает, что обесцвечивание является следствием обратимого восстановления красителя в лейкоформу [c.205]

    Нет сомнения в том, что в недалеком будущем окись углерода и водород, а затем, видимо, углекислый газ и вода будут важными исходньгми продуктами юинтеза. Отсюда ясно то эначевие, которое приобретает теория каталитического синтеза на основе СО и Нг. Создание этой теории как части более общей теории органического катализа менее сложно, чем разработка теоретических вопросов, например каталитической гидрогенизации фульве-нов или других сложных молекул. Ведь на примерах синтеза метанола или этилена из СО и Нг легче разобраться в механизме реакций, чем на примерах превращения сложных веществ. Кроме того, до определенных пределов синтез из СО и Нг представляет собой процесс постепенного перехода от простого к сложному. Из этого следует, что разработка теоретических вопросов каталитического синтеза на основе СО и Нг явится предпосылкой к созданию более общих теоретических положений катализа. [c.203]

    Превращение органических соединений в летучую форму, удобную для анализа на масс-спектрометре, может быть осуществлено одним из лшогих методов, предложенных для прямого определения кислорода [42, 579]. Одним из наиболее важных является метод Тер-Мейлена [1390], по которому кислород, содержащийся в органических соединениях, количественно превращается в воду при испарении в токе чистого водорода, крекинге или пиролизе соединения при высокой температуре и пропускании продуктов реакции над никелевым катализатором при 350°. Другой метод был предложен Шютце-[1806] и модифицирован Унтерцаухером [669, 2066]. В методе Шютце — Унтерцаухе-ра образец термически разлагается в токе чистого азота, и полученные продукты пропускаются над углеродом при температуре около 1000°, причем они превращаются в окись углерода и далее в двуокись углерода под действием пятиокиси иода. Дёринг и Дорфман [501], используя этот метод, получили хорошие результаты. В случае работы на масс-спектрометре с высокой разрешающей силой превращение окиси углерода в двуокись необязательно. Для исследования смеси СО и N2 необходимо, чтобы отношение М/АМ было равно 2300. Если применяется метод анализа Тер-Мейлена, то вода может быть исследована непосредственно, как и при определении дейтерия, либо по двуокиси углерода. Для этого перемешиванием воды и двуокиси углерода в запаянных стеклянных трубках в течение нескольких часов при комнатной температуре, как это описано Коуном и Юри [368], достигают состояния равновесия [1403]. Содержание 0 в воде может быть вычислено из состава равновесной смеси двуокиси углерода и воды по константе равновесия обменной реакции, равной 2,094 при 0° 2141]. [c.89]

    При промышленном процессе в качестве окислителя применяют воздух или кислород по-видимому, второй заслуживает предпочтения. В любом случае состав смеси воздуха (или кислорода) с этепом должен подбираться с таким расчетом, чтобы предотвращалось образование взрывчатых смесей. Для облегчения отвода тепла таблетирова 11-ный или псевдоожиженный катализатор загружают в трубчатые реакторы, трубки которых охлаждаются циркулирующим органическим теплоносителем, например дифенильной смесью или керосином. Окись этилена выделяют из газов реакции абсорбцией холодной водой, из которой ее затем удаляют отпаркой. После извлечения окиси этилена часть отходящих газов из реактора выводят в атмосферу для у,а,аления инертны.х компонентов из системы. Остальное количество после очистки от двуокиси углерода, которая в противном случае будет накапливаться в системе, возвращают в реактор. В условиях промышленной установки избирательность превращения в целевой продукт достигает 60—70%. [c.268]

    Пропионовая кислота дает СзР Н, а масляная кислота — СдРеН и СдРуН. При электролизе некоторых кислородсодержащих органических соединений образуется некоторое количество ОР,, особенно если в среде имеется вода. Многие азотсодержащие исходные соединения дают некоторое количество МРд. При определенных условиях в результате электролитического процесса образуются двуокись углерода и в меньшем количестве — окись углерода. В некоторых случаях образуются фторированные смолы, но так как они обычно растворимы в реакционной среде, то они не препятствуют отделению продуктов реакции. В большинстве случаев продукт реакции содержит такое же число атомов углерода, как и исходное соединение, но иногда получаются продукты, содержащие большее или меньшее число атомов углерода по сравнению с исходными. [c.167]

    Ш соединений с применением хлората калия в качестве окислителя, иьзуя который можно по количеству полученных угольного ангидрида и воды вычислить количество углерода, водорода и кислорода в соединении. Этот метод, связанный с бурной реакцией, был видоизменен, и впоследствии (1815) Гей-Люссак вместо хлората в качестве окислителя стал применять окись меди. Разработанные им методы проложили путь для элементарного анализа органических веществ и затем привели Либиха к открытию его известного способа, применяемого я в настоящее время в исследовательских лабораториях. [c.180]

    Соединения меди(И). Оксид меди 11), нли окись меди, СиО — черное вещество, встречающееся в природе (напри.мер, в виде минерала тешрита). Его можно легко получить прокаливанием карбоната гидроксомеди (И) (СиОН)2СОз или нитрата меди(II) Си(N03)2. Окснд меди(П) проявляет окислительные свойства. При нагревании с различными органически.ми веществами СиО окисляет их, превращая углерод в диоксид углерода, а водород — в воду и восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе орга-)- нческих веществ для определения содержания в них углерода и водорода. [c.573]

    Основными продуктами окислепия пропана являются окись и двуокись углерода, уксусргый альдегид, формальдегид, небольшие количества спиртов и нотитруемые количества органических перекисей. Общая степепь превращения пропана в кислородсодержащие продукты достигает 16"о. Эти продукты найдены как при испо.т[ьзовании разряда в парах воды, так и при пспользовании разряда в молекулярном кислороде. Прп использовании разряда в нарах воды может получаться метан в результате реакции пропана с атомами водорода, по анализ па метан ]шмп не производился. [c.56]


Смотреть страницы где упоминается термин Реакции к окиси углерода воды или органических: [c.273]    [c.133]    [c.186]    [c.13]    [c.285]    [c.13]    [c.146]    [c.39]    [c.13]    [c.443]    [c.329]    [c.124]    [c.573]    [c.256]    [c.327]    [c.401]    [c.713]    [c.48]    [c.48]    [c.56]   
Каталитические свойства веществ том 1 (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Окись углерода, реакции

Органические реакции

Реакция воды

Углерод органический

Углерода и водой



© 2025 chem21.info Реклама на сайте