Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кис.юта как катализатор при олефинов органическими кислотами

    Олефины с органическими кислотами не реагируют, но в присутствии таких высокоактивных катализаторов, как серная кислота, фтористый водород или трехфтористый бор, иногда получаются хорошие выходы сложных эфиров. Известный метод Бертрама и Вальбаума, согласно которому раствор олефина в ледяной уксусной кислоте, содержащей около 1% серной кислоты, оставленный на несколько часов при комнат- [c.384]


    Алкилирование фенолов олефинами, спиртами и галоидалкилами в настоящее время в литературе описано довольно подробно [1 ]. В качестве катализатора этого процесса применяют практически все минеральные и органические кислоты, безводородные кислоты и окислы как в чистом виде, так и с различными добавками. На опытной установке катализатором процесса алкилирования служила серная кислота. Взаимодействие п-крезола с изобутиленом и в присутствии серной кислоты изучалось многими исследователями [10]. В результате было установлено, что при понижении температуры реакции выход эфиров повышается, при увеличении количества серной кислоты снижается выход целевого продукта и, так же как при повышении температуры реакции, увеличивается смолообразование. [c.135]

    Органические соединения серы не только разбавляют катализатор— присутствие продуктов их превращений в серной кислоте ускоряет полимеризацию олефинов и другие побочные реакции. Поэтому очевидно, что персоналу на установках алкилирования следует часто проверять работу обессеривающего оборудования и принимать все необходимые меры для достижения высокой степени обессеривания олефинового сырья. [c.217]

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]


    В промышленности в настоящее время широко осуществляется алкилирование бензола этиленом и пропиленом в присутствии катализаторов хлористого алюминия, серной и ортофосфорной кислот [28, 29]. Эти катализаторы обладают недостаточной эффективностью и вызывают отмеченные выше нежелательные побочные реакции, поэтому в данное время в связи с широким и разнообразным использованием алкилбензолов как сырья для химической промышленности внедрение в реакцию алкилирования новых катализаторов, имеющих преимущества перед указанными выше, является весьма актуальным вопросом. С этой точки зрения очень интересным и многообещающим катализатором алкилирования бензола и его гомологов олефинами является фтористый бор и его молекулярные соединения с различными неорганическими и органическими соединениями. [c.356]

    Весьма энергично полимеризуются изоолефины в присутствии ВРз и его молекулярных соединений. На протяжении последних 15 лет всеобщий интерес со стороны исследователей, занимающихся полимеризацией, вызывает изобутилеп. В органической химии трудно найти другое соединение, которое столь постоянно привлекало бы к себе внимание исследователей. А. М. Бутлеров [2] на примере полимеризации этого углеводорода в присутствии серной кислоты изучил механизм полимеризации олефинов. После этого для полимеризации изобутилена применялись самые разнообразные катализаторы. [c.197]

    Фракция углеводородов С4 с нефтеперерабатывающих заводов обычно содержит бутен-1, бутен-2, изобутилен, изобутан,. м-бутан и бутадиен. Бутадиен может быть удален из фракции С4 селективным гидрированием или полимеризацией его на катализаторах глинистого типа. Изобутилен выделяют экстракцией 65%-ной серной кислотой. После этого перегонкой можно отделить изобутан п бутен-1 от н-бутана и бутена-2. Олефины отделяют от парафиновых углеводородов экстрактивной перегонкой с ацетоном, фурфуролом или ацетонитрилом. В ряде промышленных синтезов органических продуктов используют бутан-бутиленовые смеси, из которых предварительно удален изобутилен. [c.37]

    Для алкилирования фенолов с использованием серной и я-то-луолсульфокислоты до сих пор часто применяют несовершенный периодический процесс. При алкилировании высококипящими жидкими олефинами реакцию проводят в аппарате с мешалкой и рубашкой для обогрева паром или охлаждения водой. В него загружают фенол и кислоту, нагревают их до 90 С, после чего при перемешивании и охлаждении подают жидкий олефин (диизобутилен, тример или тетрамер пропилена и др.). Во второй половине реакции, наоборот, необходимо подогревать реакционную массу. Общая продолжительность операции составляет 2—4 ч. После этого реакционную массу нейтрализуют в смесителе 5%-ным водным раствором щелочи, взятым в эквивалентном количестве к кислоте-катализатору, нагревая смесь острым паром. При этом отгоняется непрореагировавший олефин, который после конденсации паров отделяется в сепараторе от воды и может повторно использоваться для алкилирования. Нейтрализованный органический слой сырых алкилфенолов отделяют от водного раствора солей и направляют на вакуум-перегонку, когда отгоняются вода, остатки олефина и непревращенный фенол. [c.365]

    Очень важной реакцией в современном органическом синтезе является реакция алкилирования алканов олефинами. Сущность этой реакции — присоединение алкана (преимущественно с третичным атомом углерода) по двойной связи олефина. Катализаторами реакции служат серная и фтористоводородная кислоты, трехфтористый бор, хлористый алюминий  [c.74]

    К катализаторам прямой гидратации олефинов относятся неорганические вешества 1) соли кислот, например фосфаты 2) кислоты, например фосфорная или серная 3) окис-ные катализаторы, например окислы вольфрама, ванадия, алюминия 4) активированные алюмосиликаты, а также органические вешества пиридин, хинолин, сульфокислоты. Наиболее эффективны неорганические катализаторы [2911. [c.296]

    Как уже указывалось, в качестве катализатора используют серную кислоту. Исходная серная кислота обычно содержит 98% моногидрата. В процессе работы она срабатывается до концентрации 85%, после чего ее откачивают с установки. Применение более крепкой кислоты вызывает окисление углеводородов и другие сложные процессы, сопровождающиеся осмолением продукта, выделением сернистого газа и уменьшением выхода алкилата. Низкие же концентрации кислоты способствуют реакции полимеризации олефинов и образованию соответствующих алкилсерных эфиров. Эти эфиры при нагревании разлагаются с образованием разбавленной серной кислоты, корродирующей аппаратуру. Постепенное снижение концентрации серной кислоты связано с накоплением в кислотном слое органических соединений, а также воды — как содержащейся в исходном сырье, так и образующейся в результате побочных реакций. [c.244]


    Серная кислота применяется в промышленности органического синтеза как катализатор реакций этерификации, полимеризации, конденсации, дегидратации и гидратации. Примерами могут служить синтезы сложных эфиров, получение компонентов высокооктанового топлива, получение простых эфиров, синтез спиртов из олефинов, синтез ДДТ, гидролиз древесины. [c.126]

    Фосфорная кислота — более слабы " катализатор в сравнении с серной кислотоиГВ ее присутствии реакция протекает при повышенных температурах практически без образования побочных продуктов и смолы. Кислота после регенерации используется повторно. Процесс алкилирования бензола олефинами проводят при температуре 473 К и давлении 2,8—4,2 МПа. Срок службы катализатора в таких условиях — 3 года. Ядами катализатора являются органические соединения азота, нейтрализующие кислоту, и кислород, вызывающий отложение смолистых веществ на поверхности. Для предотвращения дегидратации и дезактивации катализатора в реакционную смесь добавляют небольшое количество воды (>0,1% масс, в расчете на сырье) или изопропилового спирта. Регенерируют катализатор обработкой три-этилфосфатом, растворенным в бензоле. Для продления срока службы катализатора реакционную смесь (бензол, олефин) предлагается пропускать над слоем аморфного кристаллического алюмосиликата. [c.22]

    После этого, на протяжении почти 30 лет, реакция алкилиро-вания кислот олефинами не привлекала внимания исследователей, и только с 1921 г. стали появляться патентные сообщения, предлагающие различные катализаторы для проведения указанной реакции. Обычно в качестве катализаторов рекомендуются галоидные, фосфорнокислые и оернокислые соли металлов, а также минеральные кислоты. Особенно часто для алкил1и р0ваиия органических кислот жидкими и газообразными олефинами в качестве катализатора употребляется серная кислота [13—29]. Основным недостатком серной кислоты является низкая каталитическая активность ее, позволяющая получать эфиры с выходом, не превышающим 30% от теоретического. [c.8]

    Для ускорения взаи модействия окисей олефинов с органическими кислотами предлагались такие вещества, как неорганические кислоты (серная кислота), кислые соли (бисульфат натрия) или соли сильного основания и органической кислоты, отличной от той, которая применяется для этерификации В другом методе реакция между окисями олефинов и карбоновыми кислота.ми катализируется присутствием подкисленного гидросиликата алюминия, в котором концентрация водородных ионов, достигаемая при суспендировании катализатора в воде, соответствует велимине pH не менее, чем 3. [c.563]

    Присоединение элементов воды к непредельным соединениям по месту этиленовых связей осуществляется действием серной кислоты или органических кислот. С серной кислотой олефины образуют алкилсер ные кислоты, которые гидролизуются в соответствующие спирты. Этилен легко реагирует с серной кислотой при температуре 70 °С, а с дымящей серной кислотой —уже при комнатной температуре катализатором реакции является Ag2SГ. Некоторые алкены (например, изо-бутилен) вступают в реакцию также и с разбавленной 1,(50—70%-ной) серной кислотой . [c.577]

    Процесс конденсации олефинов с органическими кислотами протекает под влиянием катализаторов, способных гидратировать олефины (хлористые, бромистые, фосфорнокислые и сернокислые соли тяжелых металлов, а также фосфорная и серная кислоты). Кроме того, часто эта реакция протекает только в жестких условиях — при высокой температуре и повышенном давлении. Как известно, олефины но безразличны к действию высоких температур и повышенных давлений, что влечет за собой побочные реакции, сильно снижающие выходы желаемых продуктов. Особое впимаиие уделялось применению серной кислоты в качестве катализатора. Механизм образования сложных эфиров при применении серной кислоты представлялся следующей схемой  [c.205]

    Достоинством серной кислоты как катализатора является значительная скорость этерификации при сравнительно невысоких температурах (80—150°С). К недостаткам серной кислоты как катализатора следует отнести возможность дегидратации спиртов до олефинов, сульфирование ненасыщенных соединений, присутствующих в исходных спиртах и образующихся в результате побочных реакций. Не исключается возможность осмоления органических соединений, а также образование сложных эфиров сульфокислот, что приводит к снижению цветостабильности пластификатора. Для удаления катализатора из сложного эфира-сырца необ--ходимо проводить нейтрализацию щелочным агентом и ряд водных промывок. [c.8]

    Прямая гидратация заключается в непосредственном взаимодействии олефина с водой или водяным паром в присутствии катализаторов (фосфорная кислота и ее соли, серная кислота, окись алюминия, окись вольфрама, некоторые органические соединения и др.). Этот метод получения одноатомных спиртов впервые открыл А. М. Бутлеров в 1876 г. Гидратацией изобутилена и гепти-лена в запаянных трубках в присутствии небольших количеств серной кислоты он получил изобутиловый и гептиловый спирты. [c.204]

    Каталитическое алкилирование насыщенных углеводородов олефинами, впервые осуществленное Ипатьевым, Паинсом, Комаревским и Гроссе, привело к созданию процесса получения авиационного бензина с октановым числом 100 [715, 716]. Хотя эти реакции и приобрели большое значение в промышленности, однако мы ограничимся здесь лишь упоминанием о них, поскольку они не представляют большого интереса как препаративный метод в органической химии. Укажем лишь, что из парафиновых углеводородов алкилированию олефинами практически подвергаются только изопарафины, главным образом изобутан. Нафтеновые углеводороды и в незьшчительной степени нормальные парафиновые углеводороды такл<е алкилируются олефинами, однако их алкилирование сопровождается слиптком большим числом побочных реакций. К числу применяемых катализаторов реакций алкилирования относятся хлористый алюминий, серная кислота, фтористый водород, фтористый бор и бромистый алюминий. [c.196]

    Suida рекомендовал проводить присоединение органических -сислот к олефинам в присутствии серной кислоты (в к ачестве катализатора) при 180° и под давлением от 20 до 50 ат. [c.356]

    А. М. Бутлеров обнаружил, что серная кислота и трехфтористый бор ускоряют процесс полимеризации олефинов Г. Г. Густавсон уста- новил, что хлористый алюминий является сильным катализатором, ускоряющим самые разнообразные превращения органических соединений Н. А. Меншуткин на примере реакции между галоид-алкилами и триалкиламинами (например, С2Н51 + (С2Н5)зЫ-> [c.303]

    Концентрация серной кислоты. При сернокислотном алкилировании качество алкилата снижается с уменьшением кислотности катализаторной фазы. Это происходит, в частности, из-за разбавления содержащейся в сырье водой продуктов реакшш серной кислоты с продуктами полимеризации и других побочных реакций олефинов. Добавление или регенерация катализатора для поддержания оптимального режима зависят от его расхода и чистоты, а также от качества сырья и режима, особенно тех его параметров, которые могут влиять на интенсивность побочных реакций, приводящих к разбавлению катализатора органическими веществами. Добавлять серную кислоту можно периодически. Применение многоступенчатых реакторов позволяет экономично повышать качество алкилата. [c.227]


Смотреть страницы где упоминается термин Серная кис.юта как катализатор при олефинов органическими кислотами: [c.421]    [c.20]    [c.309]    [c.97]    [c.480]    [c.268]    [c.342]    [c.155]    [c.109]    [c.90]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.356 , c.421 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота органическая

Серная кислота как катализатор



© 2025 chem21.info Реклама на сайте