Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкие и газообразные углеводороды пиролиз в олефины

    Непредельные, или ненасыщенные, углеводороды (алкены, олефины) содержатся в значительных количествах в газообразных и жидких продуктах практически всех процессов термической переработки нефтяных фракций, т. е. процессов крекинга и пиролиза. Небольшие количества непредельных углеводородов образуются при простой перегонке нефти в результате разложения высокомолекулярных веществ. [c.89]


    Г. ПОЛУЧЕНИЕ ГАЗООБРАЗНЫХ ОЛЕФИНОВ ПИРОЛИЗОМ ГАЗООБРАЗНЫХ ИЛИ ЖИДКИХ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ [c.49]

    При пиролитической ароматизации некоторых нефтей и дизельного топлива, полученного из асфальтовых нефтей, выход ароматических углеводородов и олефинов превышает 50% (табл. 67). Помимо этого, метод имеет и некоторые технико-экономические достоинства он более гибок по отношению к сырью и конечным продуктам применяется простая и прочная аппаратура непрерывного действия пе требуется трубчатая печь для испарения, так как установка питается холодным жидким продуктом. Процесс имеет хороший термический коэффициент, так как передача тепла осуш ествляется прямым контактом. Вариант такого метода был осуш ествлен на установке пиролиза остатков прямой гонки и вакуумной перегонки нефтей. Выход кокса не превышает 15%. Ароматизация протекает при низких температурах (около 780° С), но при большой продолжительности нагрева. Получаются газы, содержаш ие 50% этилена и ароматических углеводородов, в большей части бензол. Газообразных парафиновых углеводородов и особенно метана образуется намного меньше, чем при изложенном выше методе. [c.268]

    Помимо газообразных продуктов при пиролизе получают жидкие продукты, выход которых сильно зависит от качества сырья. Например, выход жидких продуктов при пиролизе керосино-газой-левой фракции равен 40—50%. Таким образом, около половины сырья превращается в жидкие продукты, для которых характерна высокая концентрация ароматических углеводородов. В легких фракциях присутствуют преимущественно бензол и толуол, в меньших концентрациях — углеводороды Сз, что объясняется большей термической стабильностью бензола. Кроме того, в жидких продуктах находятся олефины, циклоолефины, диены. [c.65]

    Расчеты показывают, что количество содержащегося в газе водорода достаточно для облагораживания дизельных фракций процесса кроме того, водород может быть направлен для другого использования. В разделе пиролиза отмечалась перспективность применения катализаторов на основе алюмосиликатов при разложении высокомолекулярных и остаточных нефтяных фракций с целью получения ароматических и газообразных олефиновых углеводородов для химической промышленности. Повышая жесткость процесса каталитического крекинга и применяя катализаторы, на поверхности которых в заметных количествах отложились тяжелые металлы, можно на природных катализаторах осуществлять режимы каталитического пиролиза с большим выходом газообразных олефинов и жидких ароматических углеводородов. [c.92]


    Наличие непредельных углеводородов в газообразных продуктах пиролиза определяют качественно, пропуская часть газа через разбавленный раствор брома или КМпОд. Для этого закрывают краны 15 и И, надевают на кран 12 резиновую трубку с наконечником, который опускают в стаканчик, на 1/3 заполненный соответствующим раствором, и пропускают через раствор газ из газометра. Обесцвечивание раствора свидетельствует о присутствии олефинов в исследуемом газе. (Оставшийся газ или сжигают, или анализируют на хроматографе.) Для сравнения с процессом крекинга можно провести анализ жидких продуктов пиролиза или отдельных фракций на содержание непредельных и ароматических углеводородов (см. работу 29). [c.101]

    Получение олефинов пиролизом жидких и газообразных углеводородов [c.63]

    При пиролизе образуются газы, насыщенные олефиновыми углеводородами, и жидкие продукты с разным содержанием ароматических, в зависимости от сырья, характера технологического процесса, режима его и заданного направления переработки. При любом методе пиролиза наряду с газообразными углеводородами и низкомолекулярными ароматическими соединениями образуются жидкие продукты, содержащие большие количества олефинов и определенную долю высокомолекулярных ароматических углеводородов (около 10—25% на сырье), которая также зависит от характера процесса и вида исходного сырья. Эти продукты пиролиза и могут служить весьма подходящим сырьем для получения нефтеполимерных смол. [c.35]

    Термический пиролиз углеводородов был первым промышленным процессом деструктивной переработки нефти. Сначала пиролиз служил для получения светильного газа. В период первой мировой войны во многих странах обратили внимание на пиролиз керосина, как на дополнительный источник производства толуола. Получение ароматических углеводородов, главным образом толуола, посредством пиролиза осуществлялось вплоть до 40-х годов и постепенно с развитием процессов риформинга утратило свое значение. В настоящее время пиролиз газообразного и жидкого углеводородного сырья является основным крупномасштабным способом производства низших олефинов и вновь получает распространение как серьезный источник ароматических углеводородов. [c.181]

    При пиролизе газообразных олефинов в качестве отходов получается до 20—25% жидких продуктов—смол пиролиза, в которых содержится сложная смесь углеводородов, состоящая, в основном, из ароматических и непредельных соединений бензола, толуола, ксилолов, нафталина, стирола, индена, метилбутадиена и др. [c.150]

    Основными процессами, служащими для переработки нефтехимического сырья, являются следующие конверсия природного газа с целью получения синтетического аммиака, его производных и метанола пиролиз жидких и газообразных углеводородов с целью получения олефинов дегидрирование бутана в бутадиен производство сажи из природного газа и тяжелых ароматизированных нефтяных дистиллятов. [c.12]

    ПИРОЛИЗ КАК ОСНОВНОЙ МЕТОД МАССОВОГО ПРОИЗВОДСТВА ОЛЕФИНОВ ИЗ ЖИДКИХ и ГАЗООБРАЗНЫХ УГЛЕВОДОРОДОВ [c.34]

    Как мы показали недавно [1], адамантан представляет собою соединение весьма стойкое в термическом отношении он подвергается пиролизу лишь при температурах выше 600° С, превращаясь при этом главным образом в газообразные олефины и ароматические углеводороды — бензол, алкилбензолы, нафталин, индан. Количества газообразных и ароматических углеводородов в продуктах пиролиза относятся друг к другу как 4 3. В присутствии алюмосиликатного и алюмохромового катализаторов [2] адамантан превращается при 550—570° С, образуя, с одной стороны, смесь газообразных парафинов и олефинов, с другой — жидкие и твердые ароматические углеводороды в соотношении приблизительно 3 1. [c.69]

    Основным назначением пиролиза в настоящее время является получение газообразных низших олефинов — этилена и пропилена. Образующиеся наряду с ними жидкие продукты, состав которых зависит от технологических условий процесса, фракционного и группового состава сырья, являются источником для получения ароматических углеводородов [109, ПО]. [c.181]

    Выбор сырья определяется многими факторами, среди которых важное значение имеют наличие свободных сырьевых ресурсов, эффективность их использования, потребность в продуктах пиролиза, объем затрат на переоборудование установок при переходе на новые виды сырья. В табл. 7 приведены балансы разложения газообразных и жидких углеводородов и нефтяных фракций в условиях жестких режимов пиролиза [И ]. Для максимального выхода олефинов целесообразно использовать сырье с высоким содержанием парафиновых (особенно нормального строения) углеводородов. Углеводородное сырье с большим содержанием нафтеновых углеводородов и малым содержанием парафинов при пиролизе дает относительно низкие выходы этилена, но позволяет получать зна- [c.39]


    В качестве сырья термодеструктивных процессов нефтепереработки, кроме пиролиза, используются остатки прямой перегонки (мазуты, полугудроны, гудроны), термического крекинга, пиролиза (смолы), деасфальтизации (деасфальтизат или асфальтит) и высококипящие ароматизированные концентраты и газойли, получаемые на основе дистиллятных продуктов (экстракты масляного производства, тяжелые газойли каталитического крекинга, коксования, дистиллятные крекинг-остатки и др.). В процессах пиролиза наилучшим видом сырья являются парафиновые углеводороды, дающие максимальный выход олефинов газообразные (этан, пропан, бутан и их смеси) и жидкие (низкооктановые бензины и керосино-газойлевые фракции). Тяжелые нефтяные остатки (ТНО) представляют собой исключительно сложную многокомпонентную и полидисперсную по молекулярной массе смесь высокомолекулярных углеводородов и гетеросоединений, включающих, кроме углерода и водорода, серу, азот, кислород и металлы, такие, как ванадий, никель, железо, молибден и др. Основными компонентами первичных (нативных) ТНО являются масла, смолы (мальтены) и асфальтены. Во вторичных ТНО, подвергнутых термодеструктивному воздействию, могут присутствовать, кроме перечисленных компонентов, карбены и карбоиды. [c.363]

    В качестве сырья термодеструктивных процессов нефтепереработки, кроме пиролиза, используются остатки прямой перегонки (мазуты, полугудроны, гудроны), термического крекинга, пиролиза (смолы), деасфальтизации (деасфальтизат или асфальтит) и высококипящие ароматизированные концентраты и газойли, получаемые на основе дистиллятных продуктов (экстракты масляного производства, тяжелые газойли каталитического крекинга, коксования, дистиллятные крекинг-остатки и др.). В процессах пиролиза наилучшим видом сырья являются парафиновые углеводороды, дающие максимальный выход олефинов газообразные (этан, пропан, бутан и их смеси) и жидкие (низкооктановые бензины и керосино-газойлевые фракции). Тяжелые нефтяные остатки (ТНО) представляют собой исключительно сложную многокомпонентную и полидисперсную по молекулярной массе смесь высокомолекулярных углеводородов и гетеросоединений, включающих, [c.170]

    Пиролиз жидких углеводородов до второй мировой войны исследовался, главным образом, с целью обеспечения максимального получения из них ароматических углеводородов. БлЭ" годаря тому, что производство ароматических углеводородов из нефтяных фракций налаживается на базе каталитических процессов (платформинг, риформинг и др.), пиролиз жидких угле- водородов стал рассматриваться, в первую очередь, как источник газообразных олефинов. Поэтому не случайно, что исследования пиролиза жидких углеводородов, проведенные за последние 10— [c.19]

    Настоящая книга состоит из И глав. В первых двух главах автор рассматривает источники получения олефинов как побочных продуктов (при деструктивной переработке нефтяного сырья, синтезе Фишера-Тропша, коксовании углей) и как целевых продуктов (при дегидрировании парафиновых углеводородов, пиролизе газообразных и жидких парафиновых углеводородов и коксовании тяжелых нефтепродуктов). В этих главах изложены также методы получения этилена гидрированием ацетилена и получения индивидуальных олефинов дегидратацией высших спиртов. В отдельном разделе рассматриваются методы получения индивидуальных изоолефинов полимеризацией соответствующих мономеров, а также синтез олефинов с определенным положением кратной связи в молекуле. [c.5]

    Пиробензол является продуктом пиролиза нефтяного сырья. Основное назначение процесса пиролиза — получение газообразных олефинов (этилена, пропилена, бутадиена и бутилена) для нефтехимического синтеза. Пиролизу могут подвергаться углеводородные газы, бензиновые и керосино-газойлевые фракции. Процесс пиролиза проводится на установках, основным агрегатом которых является трубчатая печь. Прямогонная бензиновая фракция, используемая в качестве сырья, нагревается в печи до 750°С, при пиролизе пропана его нагревают до 900°С. В результате термического разложения сырья образуются низкомолекулярные олефины, а также высокоароматизированные жидкие продукты — смола пиролиза и кокс. Количество смолы зависит от сырья, чем оно тяжелее, тем больше смолы. В случае пиролиза бензина или керосино-газойлевой фракции выход смолы составляет 20н-35% [9]. Смола пиролиза содержит много диеновых и олефиновых углеводородов и на 70+75% состоит из фракций, выкипаюших до 200°С. Переработка смолы пиролиза может осуществляться по топливному или химическому варианту. В первом случае смола разделяется на легкую (выкипающую до 180°С) и тяжелую части. Для получения пиробензола легкая часть гидрируется для удаления непредельных углеводородов, и из нее выделяется бензол. [c.39]

    Все процессы деструктивной переработки нефтяного сырья сопровождаются образованием углеводородных газов. Выход этих газов составляет в среднем 5—20% на сырье. При глубокой переработке современный нефтеперерабатывающий завод мощностью 12 млн. т нефти в год дает примерно 1 млн. т (т. е. свыще 8% масс.), газообразных углеводородов. Особое место среди деструктивных процессов занимает в этом отнощении пиролиз, где газ, богатый легкими олефинами, является целевым продуктом. В этом случае, после извлечения этилена, пропилена и бутилен-бутадиено-вой фракции также остается насыщенная часть газа, которая при пиролизе газов в основном идет на рециркуляцию, а при пиролизе бензина и другого жидкого сырья уходит с газофракционирующей установки. [c.272]

    В ряде исследований было показано также, что газообразные и жидкие алифатические углеводороды, под действием высоких температур 750—800°С, при обычном давлении и в отсут-.ствии катализаторов, превращаются в жидкие омеси углеводородов, так называемые смолы пиролиза, которые отличаются высоким содержанием ароматических углеводородов. Качественный состав пиролизной смолы не зависит от того, какие уг-.леводороды — газообразные или жидкие олефины, или парафины, или их смеси служили исходным сырьем. Это сказывается только на количестве образующейся смолы, которая больше при пиролизе олефинов. Главное значение имеют температура пиролиза и время контакта. При данной температуре увеличение времени реакции способствует процессу аром,атизации, л наоборот, выход олефиновых углеводородов выше при минимальном времени контакта. При большей длительности наг рева образовавшийся олефин претерпевает вторичные реакции, приводящие (в первую очередь к образованию ароматических углеводородов. [c.186]

    Применение газообразных углеводородов (этана, пропана, бутана) с целью промышленного получения этилена широко поставлено также в США. Например, известная фирма Келлог Компани по имеющимся в литературе сведениям (II] за последние несколько лет построила и пустила в действие в США, Англии, Италии и Канаде ряд установок по пиролизу газообразных и жидких углеводородов на олефины. По схеме Келлог компа-ни пиролиз углеводородного сырья проводится в пирозмеевиках в присутствии водяного пара. Продукты пиролиза по выходу из печи поступают в котел-утилизатор, который дает водяной пар в количестве, достаточном для удовлетворения всей потребности в нем процесса пиролиза, а также некоторое количество пара для привода компреоооров. [c.19]

    Путем пиролиза смесей газообразных углеводородов (как насыщенных, так и ненасыщенных) при температуре 1000—1200° можно получать ароматические и олефиновые углеводороды в зависимости от объемных скоростей, начиная от 50 до 100 и даже более обратных минут Для получения высоких вьгходов ароматических углеводородов требуется меньшая объемная скорость при большей же скорости образуются олефины или диолефины. Реакцию можно вести в две или в большее число стадий, причем после каждой стадии жидкие масла или олефиновые углеводороды удаляются. Каждая стадия отличается От преды-дуп1ей тем, что температура в ней выше или же объемная скорость меньше. Реакционные камеры, ширина которых должна быть незначительной по сравне- нию с объемом, могут быть сконструированы из карборунда, графита или сплавов, устойчивых к действию нагревания. Если стенки покрыты огнеупором типа алюмосиликатов, то увеличивается количество образующегося нафталина. Среди промежуточных продуктов имеются пропилен, этилен и ацетилен, а К О нечные продукты представляют собой легкие масла, метан, водород и уголь. Например из газообразной смеси, состоящей из 45% метана, 24% этана, 21 %j пр Опана и 10% бутана, было получено 42,7 л легкого масла на каждую 1000 при работе в одну стадию и 144,4 л при работе в три стадии [c.205]

    Распад на элементы — не единственная реакция пиролиза метана. Сокращением длительности нагревания и регулированием скорости oxJ[aждeния продуктов реакции из метана можно получить также газообразные и жидкие углеводороды. При 850— 1200 С, пропуская метан с большой скоростью через нагретые фарфоровые и кварцевые трубки, получают конденсат, содеря<а-щий непредельные углеводороды, бензол, толуол, нафталин и тяжелую смолу, содержащую высшие ароматические углеводороды. В газообразных продуктах обнаруживают этилен, ацетилен и бутадиен. Некоторые катализаторы (SiOj, W, Mo, Sn) ускоряют эпу реакцию, другие (железо, графит) — замедляют. Максимальный выход олефинов наблюдается при температурах до 1000 °С, ароматических углеводородов — при 1000—1200 С, а ацетилена — при 1500 С. Образование всех этих продуктов объясняют возникновением нри высоких температурах кратковременно су1цествующих свободных радикалов, например метиленового радикала Hg  [c.411]

    В связи с внедрением в промышленность процесса гидрокрекинга последний может быть введен в поточную схему завода для переработки газойлей прямой перегонки нефти, каталитического крекинга и коксования или же остатков. Один из возможных вариантов такой схемы применительно к высокосериистой иефти представлен на рис. 117. По этой схеме гидрокрекингу подвергается вакуумный газойль сырьем каталитического крекинга служит смесь тяжелого дистиллята гидрокрекинга, гидроочищенного газойля коксования и тяжелого рафината с установки экстракции. Поточная схема, изображенная на рис. 117, отличается от предыдущей большим разнообразием процессов для повышения октанового числа бензина использована установка изомеризации легкой головки бензина, предусмотрено разделение ароматических углеводородов на индивидуальные компоненты, в том числе на изомеры ксилола. С целью увеличения ресурсов ароматических углеводородов в схему введены установки каталитического гидродеалкилирования —для производства бензола из меиее ценного толуола и для производства нафталина из легкого газойля каталитического крекинга. На установке карбамидной депарафинизации вырабатывают зимние сорта дизельного топлива с этой же установки получают жидкий парафин —сырье для производства Луирыых кислот и других химических продуктов. Для увеличения ресурсов газообразных олефинов имеется установка пиролиза этана и бутана. В схеме широко используются процессы гидроочистки и экстракции. Большая часть гудрона идет иа получение кокса. Остальной гудрон идет иа п )оизводство битума, а часть [c.357]

    Наиболее благоприятным сырьем для получения олефинов являются парафины, при термическом расщеплении которых-в тге-зультате дегидрирования и распада цепи получаются газообразные и жидкие парафины с меньшей молекулярной массой и олефины. При пиролизе пяти- и шестичленных циклоалканов наряду с водородом и олефинами образуются диолефины, в частности бутадиен. Присутствие последнего в продуктах пиролиза играет решающую роль в получении ароматических углеводородов. Согласно одной из гипотез, ароматические углеводороды образуются в результате вторичной реакции конденсации бутадиена с этиленом и его гомологами  [c.181]

    Перерабатывать нефтяные фракции на олефины в принципе мо кпо двумя путями. Их подвергают парофазному крекингу при 600—700 " в присутствии большого количества водяного пара, 1шторый служит разбавителем и переносчиком тепла, а также препятствует коксованию. При крекинге образуются газообразные алифатические углеводороды, а также жидкие продукты пиролиза, которые могут содери ать до 50—70% ароматических углеводородов выделение ароматических углеводородов обходится дорого. Процесс пиролиза можно, однако, направлять и так, что образующиеся жидкие продукты реакции на 90—95% будут состоять из ароматических углеводородов, переработка которых проста и легко выполнима. [c.92]

    Прежде всего рассмотрим такие процессы пиролиза жидких углеводородных смесей, целью которых является лишь получение олефинов, а не полная ароматизация. При пиролизе всегда получают богатую ароматическими соединениями жидкую фракцию, так как дансе в относительно мягких условиях происходит ароматиаация, и кроме того, ароматические углеводороды содержатся в исходном сырье. В то время как парафины и нафтены распадаются с образованием газообразных продуктов, ароматические углеводороды остаются нетронутыми и накапливаются в жидких остатках крекинга. [c.93]

    При крекинге пропана с целью получет1я этилена (при 800° и длительности нагрева 1 сек. и меньше) вследствие неизбежных побочных реакций образуется жидкость с выходом примерно 10% вес. от введенного в реакцик) пропана. Она состоит большей частью из бензола Т1 других пизкомолекуляр-ных ароматических углеводородов. При крекинге пропана с увеличением длительности нагрева увеличивается и смолооб])азование, которое достигает определенного максимума и остается после этого неизменным, несмотря на увеличение продолжительности пребывания пиролизуемого вещества в зоне нагрева. С уменьшением временн реакции уменьшается выход смолы положение можно восстановить, увеличив температуру реакции. Следовательно, чтобы при крекинге газов с целью получения из них олефинов не образовалось слишком много жидких побочных продуктов реакции, необходимо при данной температуре придерживаться минимального времени пребывания в зоне нагрева. При большох длительности нагрева образовавшийся олефин претерпевает вторичные реакции, приводящие в первую очередь к образовав нию ароматических углеводородов. Увеличение температуры при оптимальном времени реакции также благоприятствует образованию ароматических углеводородов. Другими словами, чтобы при пиролизе газообразных алифа- [c.99]

    В Японии в 1967 г. запатентован способ непосредственного получения олефинов пиролизом газообразных (кроме метана) и жидких углеводородов в смеси с водородом при температуре 600— 1000 С [14], а в Великобритании в 1971 г. предложен усовершенствованный двухстадийный способ получения этилена [15], заключающийся в том, что пиролизу подвергается смесь углеводородов при условиях, обеспечиваюпщх высокий выход этана. Этан подвергается на второй стадии пиролизу до этилена. [c.191]

    При высокотемпературном пиролизе керосина, наряду с газообразными олефинами, образуются жидкие продукты — легкое масло с т, кип. до 200° С, зеленое масло и более высоко-кипящие фракции. В легком масле содержится около 20—25% бензола, 15—28% толуола, этилбензол, ксилолы, триметилбен-золы и другие ароматические углероды, а также 10—15% непредельных углеводородов. [c.128]

    Нефтехимический потенциал промышленно развитых стран определяется объемами производства низших олефинов — этилена и пропилена. Вместе с ароматическими углеводородами, прежде всего бензолом, они формируют сырьевую основу промышленности органического синтеза. В настоящее время низшие олефины в мировой нефтехимической промышленности получают пиролизом газообразного и жидкого углеводородного сырья в печах трубчатого типа, который характеризуется практически предельными выходами целевых продуктов. Этому способствовали непрерывные усовершенствования процесса пиролиза, к основным из которых следует отнести создание и внедрение печей пиролиза с вертикально расположенным пирозмеевиком, что позволило осуществлять процесс в области малых времен контакта и высоких температур, а также включение в схемы печных блоков закалочно-испарительных аппаратов, обеспечивающих утилизацию тепла продуктов пиролиза с генерацией пара высокого давления, используемого для привода пирогазовых компрессоров [1]. Несмотря на существенное улучшение технико-экономических показателей процесса пиролиза в трубчатых печах, последний имеет ряд недостатков. Так, при переработке тяжелых нефтяных фракций ужесточение режима пиролиза обусловливает возрастание теплонапряженности поверхности реактора и требует использования более жаростойких материалов для изготовления пиролизных труб. [c.8]

    Промышленное производство этилена и других низкомолекулярных олефинов на базе газообразных и жидких углеводородо в организовано и другими крупнейшими фирмами США. Так, например, построена крупная установка по получению этилена из природного газа в Тусколе [13]. Пиролиз этана проводится в трубчатых печах при температуре около 815° С и давлении 2 атм,-К этановому сырью добавляется пар, затем смесь подвергается предварительному подогреву и пиролизу. Пирогаз по выходу из печи закаливается. [c.19]

    Вторая группа охватывает следующие процессы высокотемпературный пиролиз легкого жидкого и газообразного сырья с преимущественным получением олефинов термический крекинг высокомолекулярных парафинов селективную нолимеризацню низкомолекулярных олефинов в более высокомолекулярные оле-финовые углеводороды каталитическое дегидрирование парафиновых углеводородов и синтез высших олефинов в присутствий металлоорганических соединений. [c.57]

    Пиролиз жидких углеводородов и нефтяных дестиллатов с целью получения газообразных олефинов послужил предметом многочисленных исследований. Хотя в случае промЫ Шлениого крекинга, особенно при высокотемпературном крекинге в паровой фазе, всегда получается большое количество газообразных продуктов, содержащих до 50% по объему непредельных углеводородов, все же главной целью такогО процесса является получение жидких углеводородов, кипящих в тех же пределах, что и бензин (т. е. до 200°). Поэтому, по мере возможности, обычно стараются уменьш ить количество образующегося газа. Однако крекинг как метод получения газообразных олефинов, обладает определенными возможностями и с точки зрения экономической может быть осуществлен в тех странах, где нет других богатых источников таких олефинов. [c.148]


Смотреть страницы где упоминается термин Жидкие и газообразные углеводороды пиролиз в олефины: [c.40]    [c.104]    [c.15]    [c.187]    [c.38]    [c.36]    [c.50]    [c.120]    [c.266]    [c.306]    [c.20]   
Подготовка сырья для нефтехимии (1966) -- [ c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкие и газообразные углеводороды

Жидкие углеводороды из олефинов

Жидкие углеводороды пиролиз

Олефины пиролизом углеводородо

Пиролиз газообразных углеводородо

Пиролиз как основной метод массового производства олефинов из жидких и газообразных углеводородов

Пиролиз олефинов

Получение газообразных олефинов пиролизом газообразных или жидких парафиновых углеводородов



© 2025 chem21.info Реклама на сайте