Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диссоциация на отклонение от закона Бэр

    Причиной отклонения закона распределения от прямолинейности может быть ассоциация или диссоциация растворенного вещества в одной или в обеих фазах. Допустим, что в остатке происходит ассоциация частиц растворенного вещества в двойные частицы, причем этот процесс подчиняется закону действия масс [c.784]

    Вычислим степень и константу диссоциации слабого электролита на примере уксусной кислоты с учетом зависимости подвижности ионов от их концентрации (ионной силы) и отклонения от закона действия масс. [c.467]


    Все отклонения от законов идеальных растворов формально учитываются коэффициентами активности. Поэтому если известны активности распределяемого компонента в двух растворителях, то уравнением (VI, 100) можно пользоваться также и при диссоциации или ассоциации молекул в растворе. [c.224]

    Причин отклонений от закона Бугера—Ламберта — Бера много. С изменением концентрации вещества в растворе меняется сила взаимодействия частиц (агрегация и дезагрегация, процессы полимеризации). Вещества, обладающие кислотно-основными свойствами, изменяют pH раствора, при этом возможно или образование различных комплексов, отличающихся друг от друга спектрами поглощения, или изменение степени диссоциации данного вещества, а ионы и нейтральные молекулы часто имеют резко различные спектры поглощения. Спектр поглощающего вещества может изменяться из-за накоплен гя в растворе некоторых непоглощающих, но химически активных веихеств. [c.23]

    Отклонения от закона Рауля связаны с изменением активности молекул в растворе, обусловленным химическим взаимодействием между ними, диссоциацией, гидратацией (в водных растворах) и др. Степень отклонения свойств реального раствора от свойств идеального раствора определяется величиной коэффициента активности у, равного отношению [c.476]

    Закон Бера соблюдается не всегда. Отклонения от него свидетельствуют о возможных межмолекулярных взаимодействиях (ассоциация, сольватация, диссоциация молекул, комплексообразование и т. д.), протекающих в данной среде при изменении концентрации поглощающего вещества. Поэтому при измерении спектров поглощения в растворах различной концентрации предварительно проверяют выполнение закона Бера. Для этого исследуют зависимость оптической плотности D от концентрации С (при постоянных X и I). При соблюдении закона эта зависимость выражается прямой линией в координатах D и С. [c.125]

    Если окрашенный комплекс очень мало диссоциирует, то при разбавлении раствора количество поглощающих свет центров не изменяется. Поэтому при наблюдении сверху мы пе замечаем изменения окраски. Если же при разбавлении происходит заметная диссоциация окрашенного комплекса (с образованием бесцветных компонентов), то, очевидно, будет наблюдаться некоторое ослабление интенсивности окраски. При наблюдении сбоку, т. е. при постоянной толщине слоя, в первом случае изменение окраски будет прямо пропорционально изменению концентрации во втором случае интенсивность окраски при разбавлении уменьшается сильнее, чем концентрация. В последнем случае говорят об отклонении раствора от закона Беера. [c.207]


    Причину отклонения от законов Вант-Гоффа и Рауля в растворах электролитов впервые разъяснил шведский ученый С. Аррениус (1883—1887) в своей теории электролитической диссоциации. Она основывалась на трех постулатах. [c.110]

    Теория электролитической диссоциации Аррениуса дала возможность объяснить не только причины отклонения растворов электролитов от законов Вант-Гоффа и Рауля, но и объяснить многие особенности химических свойств электролитов (реакции гидролиза, значение концентрации водородных ионов и др.). Однако она имела и ряд недостатков, в частности не учитывала взаимодействия между ионами в растворе, вызываемого их электрическими зарядами. [c.112]

    Закон Бугера — Ламберта — Бэра справедлив только для монохроматического излучения в средах с постоянным показателем преломления. При изменении концентрации вещества в растворе также могут проявляться отклонения от закона Бэра, в связи с возможностью полимеризации, гидролиза, диссоциации, ассоциации, комплексообразования и т. п. С ростом концентрации вероятность всякого такого рода изменений в растворе возрастает, поэтому отклонения от закона Бэра увеличиваются. Этот закон описывает поведение весьма разбавленных растворов. [c.374]

    При разбавлении концентрированных окрашенных растворов электролитов изменяется степень диссоциации, что также вызывает отклонения от закона Бэра. В таких случаях следует разбавлять раствор не чистым растворителем, а раствором индиферентного (в отношении оптической плотности) вещества, компенсирующего убыль концентрации основного реагента при разбавлении. Изменения оптической плотности могут быть связаны также с изменением кислотности среды, поэтому часто измерения проводятся в буферных растворах. Если раствор пропускает свет в соответствии с законом Бэра, то на графике зависимости оптической плотности от концентрации получается прямая линия, идущая от начала координат (рис. 161). Отклонения от прямолинейности однако не означают, что система непригодна для коло-риметрического анализа. Полученная по экспериментальным данным зависимость /) = / (с) в виде кривой может далее служить калибровочным графиком. При помощи этой кривой по оптической плотности раствора может быть определена концентрация данного компонента в растворе. [c.374]

    Опытные данные указывают на то, что увеличение отклонений от законов разбавленных растворов сопровождается повышением электрической проводимости растворов, а также способности к химическому взаимодействию. Перечисленные особенности растворов электролитов, обнаружение ионов путем спектрального анализа и другие экспериментальные факты привели к появлению во второй половине XIX в. теории электролитической диссоциации Аррениуса, в соответствии с которой при образовании раствора электролита происходит диссоциация растворенного вещества на ионы, тем более полная, чем больше разбавлен раствор электролита. Несмотря на упрощенность этой теории, совершенно не рассматривающей причин диссоциации, не учитывающей сил взаимодействия между частицами, образования сольватов и других явлений, она позволила объяснить целый ряд опытных фактов. [c.202]

    В растворах сильных электролитов наблюдаются значительные отклонения от закона разведения Оствальда. Сначала это считалось аномалией. Однако изучение вопроса показало, что причиной отклонений является полная диссоциация сильных электролитов. В растворах не слишком высоких концентраций сильные электролиты содержатся только в виде ионов. Таким образом, растворы сильных электролитов характеризуются значительно более высокой концентрацией ионов, чем растворы слабых электролитов, и как результат этого — меньшими расстояниями между ионами и более сильным взаимодействием между ними. [c.149]

    Указать, подчиняются ли следующие растворы веществ В в 100 кг растворителя А законам идеальных растворов. Каковы причины отклонений от них (диссоциация или ассоциация)  [c.58]

    Изучая отклонения от закона распределения и используя выражения (7.4) и (7.6), можно определять коэффициенты активности, степень диссоциации или ассоциации распределяемого вещества. [c.111]

    Нарушение указанных условий приводит к отклонениям от закона Бугера. Причинами отклонений являются 1) несоответствие подставляемого в уравнения значения с истинной концентрации вещества в растворе из-за ассоциации, диссоциации, комплексообразования 2) наличие флуоресценции анализируемого вещества  [c.245]

    Следует отметить, что закон Бугера — Ламберта — Бера справедлив для всех областей спектра, т. е. не только для ультрафиолетового и видимого, но и для инфракрасного. Наблюдаемые иногда на опыте отклонения от этого закона могут быть вызваны физико-химическими или инструментальными причинами. Физико-химические причины включают в себя все явления, связанные с изменением состояния поглощающих частиц при изменении концентрации,—это диссоциация, ассоциация, полимеризация, комплексо-образоваиие в растворах. Инструментальные причины в основном сводятся к недостаточно строгой монохроматичности светового потока и неточной работе приемников излучения. [c.181]


    Эти отступления в большинстве случаев связаны со смещением максимума поглощения в результате изменения энергии перехода молекул в возбужденное состояние под действием молекул растворителя или изменением химической природы самого вещества (комплексообразованием, диссоциацией). Поэтому, изучая характер отклонений от закона Ламберта — Бера, можно судить о наличии диссоциации и комплексообразования в растворе. [c.300]

    Особый случай порядка осуществляется в растворах электролитов. Как указывалось в гл. VHI, сильные электролиты характеризуются полной диссоциацией на ионы, и все отклонения от законов разбавленных растворов связаны не с частичной диссоциацией молекул, а с электростатистическим взаимодействием ионов. [c.249]

    До сих пор все изложение было основано на допущении, что выполняются законы идеальных растворов, поскольку использовались выражения для константы диссоциации, записанной через концентрации Кс- Как известно, это не совсем точно, в особенности для растворов электролитов, где отклонения от законов идеальных растворов особенно существенны. Строго постоянной, не зависящей от концентраций компонентов является константа равновесия, выраженная через активности  [c.265]

    При ассоциации, диссоциации или химическом взаимодействии третьего компонента хотя бы в одной из фаз наблюдаются значительные отклонения от закона распределения (непостоянство К)- Экспериментальное изучение характера этих отклонений позволяет находить степень ассоциации или диссоциации растворенного вещества, его активность в том или ином растворителе, константу равновесия реакции, протекающей в одной из фаз и т. д. [c.201]

    Закон Рауля соблюдается тем точнее, чем более разбавлен раствор. По мере повышения концентрации в большинстве растворов возникает отклонение от идеального состояния, особенно в растворах солей, кислот и оснований, где различия становятся значительными даже в разбавленных растворах. Эти особенности поведения указанной категории растворов связаны с электролитической диссоциацией растворенного ве-ш,ества. [c.145]

    Ранее было отмечено, что для растворов сильных электролитов можно пользоваться только понятием кажущейся степени диссоциации. Тогда наблюдающиеся отклонения от закона действия [c.246]

    Значения изотонических коэффициентов можно определить опытным путем по отклонению величин осмотического давления, Д кип и Д/аам от этих же величин, вычисленных по законам Вант-Гоффа и Рауля для растворов неэлектролитов той же концентрации. Следует отметить, что в большинстве случаев коэффициент i не равен предельному целому числу, соответствующему полной диссоциации, а лишь стремится к нему по мере разбавления раствора. [c.92]

    Все изменения в растворах электролитов, связанные с диссоциацией и вызывающие отклонения от законов идеальных растворов, характеризуются степенью диссоциации  [c.67]

    Подстановка изотонического коэффициента в уравнения (VI. 1) — (VI.3) позволяет применять их и для растворов электролитов. Изотонический коэффициент характеризует отклонение от законов идеальных растворов вследствие электролитической диссоциации электролитов. [c.154]

    Так как константа диссоциации с изменением концентрации раствора не меняется, она дает более общую характеристику электролита, чем степень диссоциации. Это верно, однако, лишь для слабых электролитов, растворы которых содержат сравнительно немного ионов. Напротив, у сильных электролитов начинает заметно сказываться наличие электростатического взаимодействия ионов друг с другом, результатом чего являются отклонения от закона действия масс и изменение величины К при разбавлении раствора. Поэтому в приводимой таблице константы диссоциации (при обычных температурах) даны только для некоторых слабых электролитов. [c.176]

    Поскольку отклонение от закона Бера отражает взаимодействия компонентов раствора, то оно представляет особый интерес для физико-химического исследования свойств растворов. Изменение концентрации поглощающего свет вещества, введение в раствор других веществ (электролитов и неэлектролитов), переход от одного растворителя к другому, изменение температуры— все эти факторы могут привести к изменению спектра поглощения. Появление новых центров поглощения вследствие протолитических или таутомерных превращений, образования или диссоциации комплексных соединений и различных ассоциатов вызывает качественное изменение спектра поглощения. [c.647]

    Экспериментально а определяют, наблюдая отклонении свойств растворов электролитов от теоретических зависимостей, установленных для идеальных растворов. Законы идеальных растворов (см. гл. УП, 3) связывают их свойства — упругость насыщенного пара, температуры кипения и замерзания, осмотическое давление с концентрацией молекул растворенного вещества. При диссоциации вещества на ионы число его частиц в растворе возрастает и в уравнениях появляется изотонический коэффициент 1, учитывающий степень диссоциации. Сравнивая расчетные и наблюдаемые показатели свойств растворов, можно определить поправочный коэффициент, а по нему а. [c.156]

    Законы Рауля и Вант-Гоффа [см. уравнения (10.3), (10.4) и (10.19)] справедливы только для разбавленных растворов неэлектролитов. Растворы электролитов обнаруживают значительные отклонения от этих законов вследствие электролитической диссоциации. Как было показано, это дает возможность опытным путем определять поправочный коэффициент I и по нему рассчитывать степень диссоциации электролита. [c.95]

    Однако отклонение квантового выхода от единицы не означает отклонения от закона фотохимической эквивалентности. Как показывает опыт, фотохимический процесс слагается из первичного процесса, протекающего в результате поглощения светового кванта, и, как правило, приводящего к диссоциации молекулы и образованию свободных атомов и радикалов, и из вторичных процессов, протекающих в результате вступления в реакцию образовавшихся в первом процессе атомов и радикалов. Вторичные процессы могут сводиться к дезактивации возникших в результате поглощения света молекул или к рекомбинации атомов и радикалов. Первичные фотохимические процессы, являющиеся истинно фотохимическими, всегда подчиняются закону эквивалентности 111тарка — Эйнштейна. Таким Образом, отклонение квантового выхода от единицы означает не отклонение от закона эквивалентности, а появление вторичных процессов, которые, изменяя величину квантового выхода, идут уже без поглощения света. [c.233]

    Расплавы солей обладают ионной проводимостью, поэтому к ним применим закон Фарадея. Расстояния между ионами в расплавах малы, следовательно электростатические взаимодействия ионов очень велики. С другой стороны, ионы в расплавах обладают большой кинетической энергией, поэтому трудно говорить о степени диссоциации расплавов. Можно предполагать полную диссоциацию солей в расплаве. Однако при сравнительно низ-К1Х температурах плотная упаковка ионов препятствует более или менее сиободному их движению. Каждый ион в расплаве занимает (в среднем по времени) место, соответствующее минимальной потенциальной энергии отно-С1тельных соседних ионов положение ионов аналогично положению их в кэисталлической решетке при равновесии. В связи с миграцией энергии каждый ион колеблется около положения равновесия, потенциальная энергия eio при отклонении от равновесного состояния увеличивается. Такое смещение ионов вызывает нарушения структуры расплава, подобные дефектам кри- [c.451]

    Отклонения от закона распределения наблюдаются при изменении состояния растворенных молекул в од1ЮЙ из фаз системы. Такими изменениями могут быть, например, диссоциация или ассоциация растворенного вещества. При этом устанавливается сложное равновесие между простыми и ассоциированными молекулами или ионами в пределах каждой фазы, а также между частицами, одинаковыми для всех фаз системы и распределенными между ними в данном соотношении. [c.212]

    Основы теории электролитической диссоциации. В 1887 г-Вант-Гофф установил, что определенное экспериментально осмотическое давление в растворах солей, кислот и оснований превышает вычисленное по уравнению (2.59). Подобные отклонения измеренных величин от вычисленных по соответствуюш,им уравнениям наб.5юдаются в сторону повышения для температуры кипения и в сторону понижения для температуры отвердевания этих растворов. Так, например, молекулярная масса Na l равна 58,5, а на основании криоскопических измерений она оказалась равной при-щ мерно 30. Не зная, чем можно объяснить эти отклонения, но стремясь сделать соответствующие уравнения пригодными для этих растворов, Вант-Гофф ввел в них поправочный множитель i, названный изотоническим коэффициентом . Подставляя коэффициент i в уравнение для расчета осмотического давления и в уравнения законов Рауля, получаем соотношения, пригодные для описания разбавленных растворов всех веществ, в том числе и для растворов солей, кислот и оснований  [c.246]

    Долецалек [47] попытался количественно объяснить отклонения от закона Рауля химическими реакциями в растворах. По Долецалеку, отрицательные отклонения от закона Рауля объясняются ассоциацией компонентов друг с другом, а положительные отклонения — диссоциацией в растворе ассоциированных комплексов одного из компонентов. Однако эта теория, невидимому, справедлива лишь для ограниченного класса растворов. Для многих систем с точки зрения этой теории необходимо предполагать наличие сложных молекулярных соединений, реальное существование которых мало вероятно. Особенно большие затруднения возникают при объяснении отклонений от идеального поведения в системах, образованных ограниченно растворимыми компонентами. По Долецалеку необходимо принять, что в таких системах один из компонентов тем более ассоциирован и тем в большей степени диссоциирует в растворе, чем меньше его взаимная растворимость с другим компонентом. Несостоятельность такого объяснения очевидна. [c.60]

    Отклонения от закона распределения наблюдаются при различных состояниях растворенных молекул в одной из фаз системы. Такими различными состояниями могут быть диссоциированные или ассоциированные молекулы растворенного вещества. По коэффициенту распределения можно определить степень ассоциации или диссоциации растворенного вещества в том или ином растворителе, константу равновесия реакции, протекающей в одной из фаз, активности растворенных веществ и другие свейства. Закон распределе- [c.206]

    У1еханизм и причины электролитической диссоциации. В 1887 г. С Аррениус выдвинул гипотезу о том, что электролиты в воде диссоциируют (распадаются) на положительно и отрицательно заряженные частицы — ионы. Увеличение числа частиц в растворе вследствие электролитической диссоциации обусловливает отклонение от законов Рауля и Вант-Гоффа. Изотонический коэффициент показывает, во сколько раз увеличивается общее число частиц в растворе вследствие диссоциации электролита. Согласно Аррениусу диссоциирует лишь часть молекул, причем процесс имеет обратимый характер. Процесс электролитической диссоциации электролита КА на ионы и А , по Аррениусу, имеет вид КАч=ь + А". Как было установлено позднее, это уравнение можно написать лишь для так называемых слабых электролитов. Аррениус исходил из физической теории растворов. Эта теория рассматривала растворы как механическую смесь молекул и ионов растворенного вещества с молекулами растворителя, между которыми нет никаких видов взаимодействия. На основании физической теории трудно объяснить разрыв прочных химических связей диссоциирующих молекул. [c.152]

    Таким образом, классическая теория электролитической диссоциации позволила разумно объяснить закономерности, которые казались отклонениями от законов Рауля, Генри, Вант-Гоффа. Она в свое время была шагом вперед и сыграла большую роль в развитии учения о растворах. Вместе с тем теория электролитической диссоциации Аррениуса не может объяснить ряд экспериментальных фактов. Так, трудно себе представить, чтобы такой электролит, как КС1 или Na l, распадался в воде не полностью. Диэлектрическая постоянная воды много больше, чем кристалла, т. е. силы электростатического взаимодействия ионов Na+ и С1- в растворе весьма слабы, и поэтому в воде молекулы Na l не могут образовываться. [c.290]

    Неполная электролитическая диссоциация, г. е. распадение не всех молекул растворенного вещества на ионы, происходит только в растворах слабых электролитов. Для таких растворов можно говорить о концентрации ионов. Для сильных электролитов полная электролитическая диссоциация всех молекул растворенного вещества наблюдается даже в концентрированных растворах, но образо-вавщиеся ионы испытывают электростатическое взаимодействие. Между ионные силы вызывают отклонение поведения раствора сильных электролитов от законов идеальных растворов. Для того чтобы эти законы можно было применить к растворам сильных электролитов, в формулы вместо величины общей концентрации вводят величину активности  [c.57]


Смотреть страницы где упоминается термин Диссоциация на отклонение от закона Бэр: [c.233]    [c.374]    [c.374]    [c.157]    [c.205]    [c.284]   
Фотометрический анализ (1968) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Бэра закон отклонения, влияние диссоциации

Отклонение от закона Беера и диссоциация окрашенных комплексов

Отклонение от закона Бэра в связи с диссоциацией комплекса

Отклонения



© 2025 chem21.info Реклама на сайте