Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан, определение ванадия

    Описан экстракционно-фотометрический метод одновременного определения алюминия и железа. Принцип метода состоит в том, что хлороформный экстракт оксихинолинатов алюминия и железа фотометрируют при 390 при 470 ммк. Метод использован для определения алюминия и железа в титане и ванадии [187]. Аналогичный вариант применен для определения алюминия и железа в магнии [188]. Экстракция оксихинолината железа и фотометрирование экстракта использованы для определения железа в крови [189]. Ванадий экстрагируют хлороформом в виде оксихинолината при pH 3,5—4,5 и полученный экстракт фотометрируют при 550 ммк [190]. Методики экстракционно-фотометрического анализа в виде оксихинолинатов разработаны для определения цинка и кадмия в присутствии больших количеств кальция [191], кальция в солях, технических продуктах и породах [192], олова в железе и стали [193], урана в присутствии тория, лантана, иттрия или самария [194] и в висмутовых сплавах [195]. Цинк и магний в форме оксихинолинатов легко экстрагируются метил-изобутил кетоном. Экстракты имеют максимумы светопоглощения [c.243]


    ЭТИМ изменяется и устойчивость соединений, отвечающих определенной степени окисления элемента. Например, оксиды Т10 и УО, содержащие титан и ванадий в степени окисления +2, — сильные восстановители, а аналогичный оксид цинка (2пО) восстановительных свойств не проявляет. [c.498]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий). [c.39]

    Определение ванадия. На поверхность металла наносят каплю 10%-ного раствора гексацианоферрата калия. В присутствии ванадия появляется красно-коричневый осадок. Титан и его сплавы образуют зеленый, желто-зеленый или желто-коричневый осадок. [c.117]


    Спектральным методом в принципе не отличающимся от метода, предназначенного для определения примесей в цирконии, описанного на стр. 172, определяют алюминий, хром, гафний, железо, магний, марганец, молибден, никель, кремний, тантал, титан, вольфрам, ванадий и цирконий. Чувствительность при определении многих примесей достаточно высокая, что позволяет расширить область применения метода, если есть возможность приготовить шкалу эталонов. [c.205]

    Титан губчатый. Спектральный метод определения ванадия, марганца, хрома, меди, циркония, алюминии молибдена, олова, магния и вольфрама Титан губчатый. Спектральный метод оиределения кремния, железа и никеля [c.821]

    Титан губчатый. Спектральный метод определения ванадия, марган- [c.570]

    Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определения палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.579]

    Титан губчатый. Спектральный метод определения ванадия, марганца, хрома, меди, циркония, алюминия, молибдена, олова, магния и вольфрама [c.579]

    Определение ванадия в четыреххлористом титане [353]. Анионный комплекс V(V) с ПАР в присутствии нитрона экстрагируется хлороформом. Определению не мешают А1, Са, Сг, К, Mg, Мп, Na, W, Zr, SO4", N-, 50-кратные количества Мо, 25-кратные — Nb, Sn, Та. Титан маскируют гидрофторидом аммония, Ре(П1) — тиомоче-виной. В этом случае не мешает 0,35 мг железа. Метод позволяет определять 10- % ванадия. [c.124]

    По окончании разложения железо частично или полностью переходит в трехвалентное состояние, поэтому перед титрованием окислителем необходимо предварительное восстановление железа любым из описанных ранее методов, например восстановление в редукторе Джонса. Амальгама цинка восстанавливает и другие элементы, обычно сопутствующие железу, например титан, ниобий, ванадий, хром, уран, вольфрам, молибден и мышьяк. В низших степенях окисления они также реагируют с перманганатом их присутствие вызывает завышение результатов определения железа. [c.380]

    При анализе питьевой воды помехи маловероятны. Магний, цинк, кальций, натрий, калий, фосфаты, сульфаты и нитраты не препятствуют определению. Марганец, цирконий, хром, титан, медь, ванадий, алюминий, бериллий и железо не позволяют провести анализ с высокой точностью. Помехи, вызванные окрашиванием пробы, наличием гуминовых кислот и/или нерастворенными веществами могут быть устранены известными приемами (обесцвечиванием, фильтрованием через фильтр с активированным углем и т.п.). [c.189]

    Например, при определении в алюминии примеси железа роданидным методом в растворах, содержащих ионы хлора, иногда пользуются калибровочным графиком, установленным по растворам, не содержащим ионов хлора. Тогда все результаты характеризуются хорошей воспроизводимостью, но вовсе не отвечают истинному содержанию. При анализе горных пород нередко заказ геологической партии не предусматривает определения ванадия, но включает определение титана. Титан обычно определяют в виде желтого комплекса с перекисью водо- [c.224]

    М шающие вещества. Метод очень избирателен. Определению ванадия не мешают значительные количества (20—40 мг) алюминия, железа(П1), кобальта, марганца, никеля, тория, меди, урана, хрома(И1), цинка. Мешает молибден(У1), титан, цирконий, а также азотная кислота в концентрации, превышающей 1 н. Мешают сильные окислители и восстановители. [c.104]

    Никель определяют фотометрическим методом в сталях (чугунах) в виде окрашенного соединения никеля (III) с диметилдиоксимом в щелочной среде в присутствии окислителей. Железо маскируют винной кислотой. Кобальт (до 1,5%), титан и ванадий (до 12%), хром (до 20%) [386] не мешают определению. Медь должна или отсутствовать, или соединение диметилдиоксимата никеля следует предварительно отделять экстракцией хлороформом [393]. Влияние меди можно устранить также цементацией. Для этого в анализируемый раствор, содержащий НС1 (1 2), опускают на 10— [c.146]

    Из второстепенных составных частей руд на определение фосфорной кислоты оказывают влияние мышьяк, титан и ванадий. [c.50]

    В пределах одной декады переходных элементов (например, от скандия до цинка) максимальная устойчивая степень окисленности элементов сначала возрастает (благодаря увеличению числа -электронов, способных участвовать в образовании химических связей), а затем убывает (вследствие усиления взаимодействия -электронов с ядром по мере увеличения его заряда). Так, максимальная степень окисленности скандия, титана, ванадия, хрома и марганца совпадает с номером группы, тогда как для железа она равна шести, для кобальта, никеля и меди — трем, а для цинка — двум. В соответствии с этим изменяется и устойчивость соединений, отвечающих определенной степени окисленности элемента. Например, оксиды Т10 и Ю, содержащие титан и ванадий в степени окисленности +2, — сильные восстановители, а аналогичные оксиды меди и цинка (СиО и 2пО) восстановительных свойств не проявляют. [c.627]


    Мешающие ионы. Окрашенные соединения с перекисью водорода дают также и некоторые другие ионы, из которых молибден, вольфрам, уран (VI) и ниобий образуют окраски, очень слабо поглощающие свет при К = 460 ммк. Хром (VI) восстанавливается перекисью водорода до хрома (III) и мешает определению. Титан образует с перекисью водорода соединение, окрашенное так же, как и соответствующее соединение ванадия. Если титан и ванадий [c.731]

    В силикатах определение ванадия производят из части раствора после выделения кремневой кислоты. В тех случаях, когда присутствуют большие количества железа или других посторонних веществ, определение их производят аналогично тому, как описано в п. б . Если же присутствует титан, а также железо до 20% по отношению к навеске испытуемого вещества, то определение ведут методом колориметрического титрования в цилиндрах. В этом случае в оба цилиндра (с испытуемым и стандартным растворами) вводят фтористоводородную кислоту, чтобы связать железо и титан. Для этого к полученному раствору прибавляют 2%-ную плавиковую кислоту или насыщенный раствор фторида натрия по каплям при перемешивании раствора до полного его обесцвечивания (устранение окраски солей железа) и сверх того [c.237]

    Определение титана и ванадия (V) измерением оптической плотности при двух длинах волн. Измерение можно проводить при Я = 410 ммк и при Я = 460 ммк. Как показывает рис. 388, окраски, получаемые с титаном и ванадием, несколько различаются. Точность метода невелика. Значения концентраций титана и ванадия находят, решая два уравнения с двумя неизвестными или с помощью специальной номограммы. [c.1033]

    Не образуют окрашенных-соединений с сульфоназо и не мешают определению ванадия 500—1000-кратные количества щелочных, щелочно-земельных и редкоземельных металлов, цинка, свинца, германия, марганца 100—200-кратные количества мышьяка, селена, молибдена, теллура, рения, никеля. Не образуют окрашенных соединений, но мешают определению ванадия элементы, гидролизующиеся в условиях определения, например, железо, титан, вольфрам, цирконий, олово (табл. 1). [c.19]

    Препятствующие анализу вещества. Железо, цирконий, алюминий, торий и другие элементы, образующие устойчивые комплексы с фторидом, мешают определению. Ванадий, молибден и церий мешают вследствие образования окрашенных перекисных соединений с перекисью водорода. Фосфаты, оксалаты, тартраты и другие комплексообразователи, связывающие титан, также мешают определению. Большие количества солей щелочных металлов частично разрушают перекисное соединение титана. [c.241]

    Из возможных компонентов алюминиевых сплавов определению мешают титан (П1), ванадий (IV) и медь, но при растворении сплава в соляной или серной кислоте медь остается в нерас-творившемся остатке и отделяется фильтрованием. [c.89]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]

    Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]

    Описанные выше реагенты применяют для определения ванадия в рудах [33, 855], сталях [33, 389, 455], феррованадии [8551, глауконите (0,013%) [464], железе [899], медных рудах [703], жаропрочных сплавах на железной (0,17—0,71%) и никелевой (0,06—0,49%) основах [364], Т1С14 [335, 3531, титане (п-10 %) [352], урановых > сплавах (0,025—0,1%) [288], нефти [883, 912]. [c.123]

    Молибден (VI). Восстановление Мо растворами rSO и r lg изучалось рядом исследователей [26, 56—60]. Реакция между Сг и Мо 1 протекает количественно в солянокислых или сернокислых растворах при 80—100° С Mo i сначала восстанавливается до Мо" , а затем — до Mo i при потенциометрическом титровании соответственно наблюдаются два скачка потенциала [60]. Определению не мешают железо (III) [41, 62, 63], медь (II), титан (IV), ванадий (V), вольфрам (VI) [41]. [c.174]

    Основными условиями применения в фотометрическом анализе комплексов титана, ванадия, ниобия и тантала с перекисью водорода является силь номи слая среда и достаточный избыток перекиси водорода. Хлориды и сульфаты мало влияют на оптические свойства этих комплексов, хотя по ряду данных они присоединяются к окрашенным комплексам Ме—Н2О2, образуя смешанные комплексы, иногда анионного типа. С другой стороны, комплексы титана и ванадия с Н2О2 вследствие своей невысокой прочности сравнительно легко подвергаются действию различных анионов, связывающих центральный ион. Например, щавелевая кислота резко ослабляет окраску или совсем обесцвечивает раствор перекисноводородного комплекса титана. При этом образуется смешанный комплекс, причем полоса поглощения постепенно сдвигается в ультрафиолетовую область спектра. Известно, что титан образует с фтором более прочный комплекс по сравнению с ванадием. Поэтому в смеси перекисных соединений этих элементов, при действии умеренных количеств фторидо В, можно обесцветить комплексное соединение титана, тогда как окрашенное соединение ванадия не разрушается. Это является основанием одного из методов колориметрического определения ванадия и титана при совместном присутствии. [c.254]

    Определение алюминия в чистых солях обычно не вызывает особых затруднений, но установление точного содержания его в таких материалах, как горные породы, минералы и керамические или металлургические продукты, является одной из наиболее сложных задач аналитической химии. В обычном ходе анализа алюминий попадает в осадок от аммиака совместно со многими другими элементами, такими, как железо, титан, цирконий, ванадий, фосфор и кремний. Содержание такой смеси часто принимают за процентное содержание КзОд , что, естественно, может ввести в заблуждение. Если состав осадка неизвестен, его следует считать как процентное содержание смешанных окислов . Неправильно также, как это часто практикуется, определять в осадке от аммиака только железо, иногда и титан, а остальное считать за алюминий. В большинстве случаев содержание алюминия целесообразно устанавливать по разности, после определения всех остальных компонентов во взвешенном прокален- [c.559]

    Преддожен [59] косв 1Ный метод определения циркония, основанный на том, что цирконий, аналогично титану, ниобию, ванадию и другим элементам, образует с фосфатом и молибдатом фосфорно-молибдено-циркониевую гетерополикислоту, которую восстанавливают хлоридом олова (в присутствии цитрата калия и комплексона III). Гетерополисоединение образуется в сернокислой и уксуснокислой средах при pH 3. Концентрация фосфата должна быть порядка 0,004 М. Избыток молибдата не должен превышать 5 10 М Определению циркония мешают Ti, Nb и большие количества Fe " . [c.159]

    Использование пламени закись азота — ацетилен сделало возможным определение других металлов, которые входят в состав сталей. Капачо-Дельгадо и Маннинг [154] определяли ванадий в стали и не обнаружили никаких помех от других металлов. При определении ванадия в диапазоне концентраций 0,02—0,05% наблюдалось хорошее совпадение результатов со стандартными значениями NBS. Маколиф [322] определял кремкий в различных типах сталей и чугуне, используя сталь одного типа в качестве эталона. По-видимому, помехи отсутствовали. Титан, цирконий и вольфрам также могут быть определены в пламени закись азота — ацетилен. [c.177]

    V (V) Ванадий можно экстрагировать из 2,8—4,3 н. соляной кислоты 0,1%-ным раствором реагента в хлороформе. Темно-красное хелатное соединение поглощает свет при 510—530 ммк (молярный коэффициент погашения равен 4500) [808, 810, 853]. Экстракция при помощи М-бензоил-К-фенилгидрок-силамина была применена для определения ванадия в сталях [1311], горных породах [853i, титане [11531 и нефти [1614]. [c.183]

    В основе всех масс-спектральных методик определения активностей лежит одновременное измерение парциальных давлений (ионных токов) компонентов в зависимости от состава расплава. Таким образом были определены активности в системах алюминий — титан [41], медь,— титан [42], ванадий — титан [43], висмут — свинец [51]. Этим же методом Белтон [44, 45, 52] и Вагнер [46—50] нашли активности в ряде других металлических систем. [c.167]

    Для образования комплекса типа КОН (Н2О2) необходимо наличие определенного соответствия между расстоянием К—О в частице КОН и расстояниями О—О и ОН в молекуле перекиси водорода. По-видимому, в соединениях титана и ванадия расстояния Т1—О и V—О оказываются слишком малыми для образования устойчивого пероксоцикла и по этой причине титан и ванадий не обладают каталитической активностью в реакции окисления иодид-ионов перекисью водорода. [c.78]

    Как было сказано выше, для колориметрического определения нона X последний переводят в окрашенное соединение, обычно комплексного характера. Так, например, железо, кобальт, молибден и вольфрам определяют часто в виде роданидных комплексов. Титан и ванадий определяют в форме комплексов с перекисью водорода. Медь, цинк и многие другие цветные металлы определяют в виде комплексов с дифенилтиокарбазоном фосфор, кремний — в виде комплексных гетераполикнслот. [c.12]

    Примечание. Описанный ход анализа предназначен в основном для образцов с низким содержанием ванадия. При содержании ванадия больше 0,1% можно пользоваться другими методами. Например, сталь растворяют в серной кислоте и для окисления железа добавляют азотную кислоту. Ванадий можно затем окислить персульфатом аммония при кипячении и определить пероксидным методом, сравнивая окраску с окраской стандарта обработанного подобным же образом. Если присутствует титан, то можно определить как ванадий, так я тйтан. измеряя экстинкцию раствора при двух подходящих длинах волн (стр. 487). Молибден не должен присутствовать в заметных количествах. В присутствии большого количества хрома необходимо разделять ванадий и хром. СМк также метод определения ванадия в стали [c.169]

    Устойчивость комплексов АФГК дает возможность применять этот реактив для прямого определения ванадия без отделения основы в некоторых титановых сплавах с соотношением ванадия к титану, равным 1 20, например в сплавах типа БТ-6, содержащих — 5% V и 90% Т1. А.люминий и железо, также входящие в состав этих сплавов, не мешают определению ванадия. [c.355]


Смотреть страницы где упоминается термин Титан, определение ванадия: [c.648]    [c.247]    [c.590]    [c.41]    [c.42]    [c.684]    [c.738]    [c.392]    [c.648]    [c.640]    [c.648]   
Практическое руководство (1976) -- [ c.139 ]




ПОИСК





Смотрите так же термины и статьи:

БГК и титана и ванадия

Ванадий определение



© 2025 chem21.info Реклама на сайте