Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий, определение в силикатах

    Фотометрическое определение ванадия при помощи пирокатехина Фотометрическое определение ванадия в силикатах при помощи [c.5]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    В силикатах определение ванадия производят из части раствора после выделения кремневой кислоты. В тех случаях, когда присутствуют большие количества железа или других посторонних веществ, определение их производят аналогично тому, как описано в п. б . Если же присутствует титан, а также железо до 20% по отношению к навеске испытуемого вещества, то определение ведут методом колориметрического титрования в цилиндрах. В этом случае в оба цилиндра (с испытуемым и стандартным растворами) вводят фтористоводородную кислоту, чтобы связать железо и титан. Для этого к полученному раствору прибавляют 2%-ную плавиковую кислоту или насыщенный раствор фторида натрия по каплям при перемешивании раствора до полного его обесцвечивания (устранение окраски солей железа) и сверх того [c.237]

    Перекись водорода образует желтую окраску с солями урана (VI) в растворе карбоната натрия или аммония. Реакция не особенно чувствительна, однако иногда ее можно применить к фильтрату после осаждения карбонатом натрия или же после сплавления с ним. На этой реакции основан метод определения урана в силикатных породах 1. Предел чувствительности такого метода лежит приблизительно при 0,01% урана. Влияние солей хрома (VI) можно компенсировать, помещая аликвотную часть анализируемого раствора в контрольную кювету фотоколориметра. Соединения молибдена (VI) и ванадия (V) также дают с перекисью водорода желтоватую окраску, однако последняя значительно менее интенсивна, чем образуемая ураном. Соли церия (III, IV) образуют интенсивную желтую окраску с перекисью водорода в карбонатном растворе (стр. 511). Фториды и фосфаты в малых количествах не влияют, однако в больших количествах (около 0,1 г аммониевой соли в 50 мл раствора) уменьшают интенсивность окраски. Силикаты практически не влияют. [c.493]

    Прежде для определения ванадия в породах при высоком его содержании применялись объемные методы. В настоящее время эти методы заменены спектрофотометрическими и спектрографическими, которые применимы не только для силикатов с высоким содержанием ванадия, но и для гранитов и других пород, содержащих лишь п- 10 % V. [c.437]

    Сульфат-, хлорид-, бромид-, нитрат-, фосфат-, силикат- и фторид-ионы не мешают определению ванадия и вольфрама, так как не реагируют с 8-оксихинолином и не экстрагируются хлороформом. [c.140]

    В условиях проведения анализа силикатов посторонние элементы на определение ванадия влияния не оказывают. [c.483]


    Миграция и перенос элементов в первичной окружающей среде известны как процессы первоначального рассеивания. При этом элементы концентрируются в определенных геологических формациях, что приводит к образованию руд. С точки зрения геохимии элементы можно классифицировать на три группы сидерофильные элементы, которые концентрируются в железистых осадках и железо-никелевом ядре Земли (к ним относятся железо, никель, хром, кобальт и платиновые металлы) халькофильные элементы, концентрирующиеся в сульфидных осадках (сурьма, мышьяк, кадмий, медь, свинец, ртуть, серебро и цинк) и литофильные элементы (щелочные металлы, магний, кальций, хром и ванадий), имеющие сродство к силикатам. [c.372]

    В новом пламени — смеси этанола и воздуха — натрий можно определять сразу же после разложения силикатов смесью НР и Н2804, так как не обнаружено влияния железа, кальция и других элементов [99]. В пламени кислород—водород при определении натрия по линии 589,6 нм не наблюдалось влияние лития, магния, меди, бария, стронция, алюминия, циркония и ванадия [1207]. Влияние ванадия не наблюдали также при его содержании до [c.122]

    Моноклинные пироксены — более распространенная, чем ромбические, группа. Это силикаты Mg, Ре и Са отличаются переменным составом и очень сходными свойствами. Точные определения пока основаны на оптических исследованиях и принадлежат петрографам, в минералогии эта группа является своего рода пасынком . В диопсиде Мд + может замещаться Ре + в любых отношениях при полном замещении возникает известково-железистый минерал — геденбергит промежуточный по составу пироксен — салит. Выделяются следующие разновидности байкалит — описаны крупные хорошо ограненные кристаллы из Слюдянки лавровит — диопсид из этого же месторождения, содержащий ванадий. [c.468]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Общие способы получения олефинов из спиртов можно разделить на две группы. При способах первой группы пары спирта пропускают при определенной температуре над катализатором например иад окисью алюминия, силикатами алюминия, окисью вольфрама или окисью тория. В способах второй группы спирт в жидком состоянии нагревают с каким-либо дегидратирующим веществом. Для дегидратации этого типа предложено много различных катализаторов, например серная кислота, иногда в присутствии некоторых сернокислых солей, фосфорная кислота, щавелевая кислота, иод и соли слабых оснований с минеральными кислотами. Из этих катализаторов серная кислота имеет широкое применение при получении этилена. Впрочем, даже этот, наиболее удачный пример применения серной кислоты не говорит в пользу ее употребления в качестве катализатора этой реакции, так как получающийся этилен содержит эфир и загрязнен сернистым ангидридом и двуокисью углерода. Количество нежелательных примесей может быть уменьшено прибавлением небольшого количества сернокислой меди или пятиокиси ванадия. Однако, несмотря на многочисленные исследования, проведенные с целью улучшения этого способа, его все eiue нельзя считать таким же удовлетворительным, как каталитический способ и даже как способ с применением горячей фосфорной кислоты 87. Способ, основанный на применении серной кислоты, может быть использован для дегидратации бли- [c.127]


    Для определения олова и ванадия в кремнийолово- или кремнийванадий-органических соединениях 30—50 мг пробы помещают в термостойкий стакан вместимостью 50 мл, добавляют по 2,5 мл концентрированных серной и азотной кислот, накрывают стакан часовым стеклом и нагревают на электроплитке до получения прозрачного или желтого (с ванадием) раствора. После охлал деиия раствор количественно переносят в мерную колбу вместимостью 100 мл, доводят объем до метки водой и фильтруют. Эталоны, содержащие 10—100 мкг/мл кремния, 0,7—1,3 мкг/мл хрома, 50—150 мкг/мл олова и 12,5—150 мкг/мл ванадия, готовят из силиката натрия, хромата калия, металлического олова (после растворения в серной кислоте) и ванадата аммония (в присутствии серной кислоты). Олово и хром определяют в ацетилено-воздушном пламени по линиям Sn 286,3 нм и Сг 357,9 нм, а кремний и ванадий — в пламени ацетилен — оксид диазота по линиям Si 251,6 нм и V 318,5 нм. [c.195]

    Ринасевич [86] показал, что силикат, молибдат или вольфрамат при содержании их в 10 М перекиси водорода в количестве порядка 100 мг/л не мешают колориметрированию по окраске пероксотитановой кислоты. Хромат мешает этой реакции, однако для устранения этой помехи разработаны особые методы. Раствор пятиокиси ванадия в концентрированной серной кислоте, как показало сравнение его с титановым реактивом, обладает несколько меньшей чувствительностью, чем реактив 11(804)2 он также был использован для колориметрического определения перекиси водорода [82]. Окраска в этом случае изменяется от зеленой до коричневой. [c.467]

    И , 5п и Ш . Мешает ванадий, образуя молибдованадатный комплекс, который можно экстрагировать. Некоторые анионы образуют с молибденом не очень устойчивые гетерополикислоты, например, хлориды и цитраты. Наибольшее влияние оказывают Р Аз , Ое , образуя гетерополикислоты. Влияние этих элементов в последнее время подробно изучено в связи с определением не только силиката, но и Р , Аз и Ое". Взаимное влияние этих элементов рассмотрено ниже. [c.197]

    Мешающее влияние различных ионов изучали, вводя их в анализируемый раствор. При определении 2—40 мкг F- в растворе могут присутствовать следующие соли и ионы в количествах, не превышающих указанные ниже 1,0 г КС1, 5,0 г Na 104-H20 100 мг бромата, бромида, иодида, нитрата, нитрита, селената и тетрабората, 10 мг сульфата, 1 мг ацетата, цитрата, силиката и тартрата, 100 мкг оксалата и фосфата, 10 мкг карбоната и сульфида 1 мг аммония, бария, кальция, лития и магния, 200 мкг хромата, 100 мкг меди(П), марганца(П) и молибдена(VI), 50 мкг хро-ма(1П), 20 мкг бериллия, 10 мкг.церия( ), серебра, титана(1У) и цинка, 5 мкг алюминия, кобальта(II), ртути(II) и никеля, 3 мкг железа(П, III), 2 мкг ванадия(V). [c.348]

    Фосфат в флуориметрических методах давно известен в качестве мешающего иона, это его свойство было использовано для аналитических целей. В работе [165] использовали свойство фосфора гасить люминесценцию комплекса алюминия с морином. Многие ионы мешают определению, некоторые из них можно отделить предварительным выпариванием анализируемого раствора с хлорной кислотой или с помощью ионного обмена. Киркбрайт, На-райянасвари и Вест [166] попытались реализовать потенциально высокую чувствительность спектрофлуориметрии, оставив при этом селективность определения фосфата, достигнутую в более ранних работах. Им удалось этого добиться следующим образом. Фосфат превращают в молибдофосфорную кислоту, которая, в свою очередь, взаимодействует с основным красителем родамином Б с образованием ионного ассоциата. После экстракции избытка красителя хлороформом ионный ассоциат молибдофосфата и родамина Б экстрагируют смесью 4 1 по объему хлороформа и бутанола и измеряют флуоресценцию этого раствора при 575 нм, длина волны возбуждающего света 350 нм. Изучение влияния на определение фосфора [37] посторонних ионов показало, что метод отличается высокой селективностью. Не мешают определению большие концентрации силиката. Мышьяк(П1) и ванадий (V) могут присутствовать в 25- и 59-кратном избытке по отношению к фосфору. Метод применим для определения 0,04—0,6 мкг Р. При изучении природы комплекса было показано, что соотношение родамина Б и молибдофосфата в ионном ассоциате составляет 3 моля на 1 моль. Это позволяет предполагать, что образуется незаряженный комплекс типа [РЬВ+]з[РМО -]. [c.466]

    Г. Костер и др. (Koster, Eisner, Ariel, 1967), определяя Zn в силикатах, обнаружили, что полярографированию цинка мешают небольшие количества платины, переходящие в раствор при разложении образца сплавлением с НзВОз+LiF в платиновых тиглях. Платину и другие мешающие определению цинка элементы (железо, марганец, ванадий и никель) отделяли с помощью ионообменных смол. Цинк определяли в злюате, проводя полярографирование на фоне ацетатно-аммонийного буферного раствора с pH 4,5. Метод проверен на стандартных образцах с известным содержанием цинка. [c.213]

    При анализе многих силикатов и руд для определения ванадия образец сплавляют со щелочами и выщелачивают водой. При этом наряду с ванадием в раствор переходит также хром в виде хромата желтая окраска последнего мешает определению ванадия. Влияние небольши количеств хрома легко устраняется при- [c.234]

    Хороший метод выделения незначительных количеств ванадая в определенных случаях основан на том, что из слабокислого раствора (рн около 4—5) извлекают хлороформом соединение ванадия с о-оксихинолином V2 b( 9H5N)4 хром (VI) не извлекается После выпаривания хлороформа остаток можно сплавить с карбонатом натрия и перевести таким образом ванадий в ванадат. Железо (III) и молибден (VI) также извлекаются, и поэтому метод не применим к материалам, содержащим железо. Алюминий, силикат, фосфат, фторид и т. п. не препятствуют извлечению ванадия. Вольфрам, дающий с о-оксихинолином осадок (нерастворимый в хлороформе), должен отсутствовать допустимо его присутствие лишь в очень малых количествах. Об отношении других металлов к о-оксихинолину см. на стр. 117. Некоторые результаты анализа силикатов, приведенные на стр. 166, свидетельствуют об удовлетворительном отделении ванадия от 100—200-кратного количества хрома. [c.161]

    Наиболее часто применямый метод отделения хрома основан на окислении последнего в щелочной среде до хромата, который остается в растворе, в то время как многие металлы — железо, титан, марганец, никель, кобальт и т. п., выпадают при этом в осадок. Элементы, остающиеся вместе с хромом в рас-, творе, частью не мешают дальнейшему колориметрическому определению (алюминий, мышьяк, фосфор), частью же najiy-шают ход определения (уран в хроматном методе, ванадий и большое количество молибдена в дифенилкарбазидном методе). Окисление можно вести в горячем растворе перекисью натрия или перекисью водорода с едким натром. Окислять можно также сплавлением с перекисью натрия или со смесью карбоната натрия (10 ч.) и нитрата калия (1 ч.), а некоторые образцы, например, силикаты анализируют, сплавляя даже с одним карбонатом натрия. При сплавлении марганец окисляется до манганата, но последний можно восстановить до гидрата двуокиси марганца, добавляя спирт к горячему раствору сплава. Хром обычно не остается в нерастворимом остатке после выщелачивания содового сплава, и поэтому повторное сплавление не требуется. Следует избегать плавня, содержащего слишком много нитрата, а также слишком высокой температуры при сплавлении, так как это может привести к разъеданию платинового тигля и ввести в раствор немного платины. [c.496]

    Определение одного хрома может быть сделано очень быстро первым из приводимых методов, но если требуется определить и )йром и ванадий, процедура становится длительной, занимая в общем три дня даже в том случае, если выпаривание производится в течение ночи. К сожалению, при анализе природных силикатов ванадий имеет гораздо большее значение, чем хром, так что на практике эти два компонента обыкновенно определяются совместно более длительным методом. Присутствие заметного количества хрома обнаруживается по желтой окраске, которую он придает фильтрату после выщелачивания содового сплава водой при определении серы или фтора. Очевидно, эта проба делается более чувствительной, если выпарить раствор до малого объема. [c.122]

    Как указывалось выше, разложение сульфидов металлов можно эффективно проводить азотной кислотой. Некоторые сульфаты также растворимы, хотя барит в основном не разлагается. Такие сульфатсодержащие силикаты, как лазурит, разлагаются полностью. Полного разложения силикатов можно обычно добиться лишь с помощью плавиковой кислоты. Этот метод был применен Вильсоном с сотр. [6] для определения общего количества серы в силикатных породах. Введение хлорной кислоты приводит к полному разложению органического вещества и трудновскрываемых сульфидов. Для ускорения окисления добавляют пятиокись ванадия, проводят его в тефлоновой чашке. [c.394]

    Определение кремния в различных объектах отличается лишь характером предварительной обработки анализируемого вещества. Метод применен к анализу черных сплавов, силикатов, руд, шлаков, огнеупорных материалов и т.д. /59-77/. Совершенно не мешает определению присутствие болыж количеств соляной, азотной, фосфорной кислот, хлористого калия, хлористого аммония, до I г хлоридов лития, бария, железа, кальция, бериллия, стронция, никеля, кобальта, марганца, цинка, хрома, олова, ртути, молибдата аммония. В присутствии Ю о-ного раствора хлористого кальция не мешают хлориды алюминия, титана и ванадила, цирко-нилсульфат, если их не более 0,5 г. Указанным методом был определен кремний в сотнях образцов пегматитов, в стекле, граните, гнейсах, амфиболитах, кварцево-слюдя<1ых сланцах, сплаве "альси- ер". Среднее квадратичное отклонений полученных результатов от данных весового анализа составляет + 0,24 относительных /77/. [c.11]

    Интенсивно окрашенный комплекс тетрапиридин-Ад (И)-персульфат [25] применен для качественного и количественного определения серебра в веществах сложного состава (силикатах). Калибровочная кривая прямолинейна в интервале 2—18 мкг мл. Не мешают определению платиновые металлы (платина, палладий, родий и осмий). Мешают ионы двухвалентного железа, ванадия, меди, никеля, кобальта и урана. [c.49]

    Указанная выше и в других местах связь ванадия с железисто-алюминиевыми силикатами наравне с существованием минерала р ос ко е л и та KoHs(Mg,Fe)(Al,V)4(5103)12, который классифицируют как ванадиевую слюду, приводит к предположению, что ванадий встречается в породах в той же степени окисления, как железо (HI) и алюминий, и способен замещать каждый из этих элементов или оба вместе. Поэтому результаты определения ванадия следовало бы представлять в виде VjOg, а не V Og. [c.898]


Смотреть страницы где упоминается термин Ванадий, определение в силикатах: [c.237]    [c.369]    [c.981]    [c.88]    [c.155]   
Колориметрический анализ (1951) -- [ c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий определение

Определение кал ция силикатах

Силикаты



© 2024 chem21.info Реклама на сайте