Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофильного замещения реакции стереохимия

    При интерпретации стереохимических результатов таких реакций необходимо соблюдать осторожность. Механизмы часто сложны. Например, скорости реакций типа реакции (132), зависят от концентрации НВг, а не только от концентрации Н" [81]. Поэтому реакция не является простой реакцией электрофильного замещения. Реакции (131) и (132) для переходных металлов часто включают механизм окислительного присоединения к металлу НВг или Вгг, за которым следует восстановительное элиминирование ВН или ВВг [80, 82]. В этих случаях стереохимия зависит от факторов, рассматриваемых в гл. 5. [c.337]


    На примере хлорвинильных металлоорганических соединений Реутовым и Белецкой была изучена реакция электрофильного замещения в ряду непредельных соединений. При этом удалось осуществить мономолекулярное электрофильное замещение 5 1 атома металла у олефинового атома углерода на иод в высоко ионизирующем растворителе — диметилсульфоксиде. Конфигурация исходных и конечных продуктов в ходе замещения не изменялась. Это позволило сделать вывод, что стереохимия реакций у олефинового атома углерода имеет иной характер, чем замещение 5 1 у насыщенного атома углерода свободная пара электронов у ненасыщенного атома углерода способна закреплять конфигурацию  [c.233]

    Динамическая стереохимия рассматривает также такие вопросы, как влияние пространственного строения на скорости реакций ( пространственные затруднения ), влияние пространственного строения на направление реакций электрофильного замещения в ароматическом ядре (экранирование орто-положений), на проведение стереонаправленных реакций с целью получения определенных пространственных форм. [c.84]

    Другой реакцией электрофильного замещения в ряду диеновых комплексов металлов, привлекшей большое внимание, была реакция дейтероводородного обмена. Обычно эта реакция является стереоспецифичной, причем электрофильная атака направлена со стороны двойной связи, обращенной к металлу [210, 658, 673] (схемы 709, 710). Детальный механизм этой реакции, учитывающий как стереохимию, так и большой кинетический изотопный эффект, был предложен Берчем и Дженкинсом согласно их данным, скоростьопределяющей стадией реакции является протонирование атома железа [210]. [c.426]

    Механизм электрофильного замещения изучен значительно менее полно, чем механизм реакций типа Зк, отчасти потому, что реакции электрофильного замещения не имеют столь же первостепенного значения, а отчасти по той причине, что металлоорганические соединения далеко не всегда оказываются удобными объектами для кинетического и стереохимического исследования. Несмотря на это было выполнено значительное число работ с целью установления Зе1- и ЗЕ2-механизмов и стереохимии этих процессов. [c.327]

    Экспериментально для электрофильного замещения у атома углерода чаще всего наблюдали сохранение стереохимии [79]. Однако известны и многие примеры реакций электрофильного замещения, которые проходят с обращением конфигурации [80]. Структуры, близкие по симметрии С , являются очевидно выгодными, однако обычны также и структуры, связанные с симметрией В этих случаях можно считать, что электрофил атакует заполненную связывающую орбиталь С— Н, но с тыла. [c.337]


    В 1953 г. была установлена стереохимия реакции электрофильного замещения, представляющей собой симметризацию ртутноорганических солей под действием аммиака [83, 84]. [c.179]

    Электрофильное замещение ртути на галоид. Дженсен [95] изучил стереохимию реакции ртутноорганических соединений с бромом. [c.192]

    Стереохимию электрофильного замещения в предельном ряду исследовали А. Н. Несмеянов и О. А. Реутов на примере двух реакции-симметризации ртутьорганических соединений под действием аммиака [66] и взаимодействия с ,идг-ртутьорганических соединений с бромной ртутью [66]. [c.292]

    Чтобы составить представление о механизме реакций электрофильного замещения, необходимо прежде всего знать их стереохимию и кинетику. [c.22]

    С учетом стереохимии и кинетики, механизм рассмотренных нами реакций электрофильного замещения у насыщенного атома углерода можно выразить следующими схемами  [c.31]

    В первых работах по стереохимии ртутьорганических соединений рассматривались системы, в которых, помимо одного асимметрического атома углерода, связанного с ртутью, имелись также и другие асимметрические центры [33—35]. Хотя эффекты участия соседних групп и асимметрической индукции, возможно, затруднили выяснение стереохимического поведения этих соединений, тем более показательно, что все три группы авторов пришли к выводу, что реакции электрофильного замещения для ртутьорганических веществ протекают с сохранением конфигурации. Этот вывод был подтвержден позднее другими исследователями на более простых системах. [c.130]

    В гл. 3 мы отметили, что для изучения механизмов реакций нуклеофильного замещения большую помощь оказывают стереохимические данные. Стереохимия электрофильного замещения долгое время не изучалась систематически. В последние годы положение дел заметно улучшилось. Прежде чем перейти к обсуждению экспериментальных фактов, остановимся на теоретических возможностях метода. [c.169]

    Д. Крам (род. в 1919 г.). Профессор химии в Калифорнийском университете в Лос-Анжелосе. Исследовал стереохимию реакций, протекающих через промежуточное образование карбониевых ионов (о выводах из его работы по производным 3-фе-нил-2-бутильного ряда см. в разд. 6.4), и реакций электрофильного замещения в алифатическом ряду. [c.173]

    В результате изучения кинетики и стереохимии реакций электрофильного замещения у насыщенного атома углерода типа I—V [c.43]

    Были обстоятельно изучены кинетика и стереохимия реакций электрофильного замещения типа I—V (реакция III открыта В. Д. Нефедовым, реакции IV—V — О. А. Реутовым). [c.117]

    Изучение стереохимии реакций этих и подобных им соединений позволило сформулировать следующее правило, определяющее пространственные особенности реакций замещения у олефинового атома углерода правило Несмеянова — Борисова) электрофильные и радикальные реакции замещения у олефинового атома углерода протекают с сохранением конфигурации. [c.453]

    Стереохимия иоддемеркурирования обоих изомеров Р-хлорви-нилмеркурхлорида в метаноле и 85%-ном диоксане изучена в условиях кинетических измерений и найдено, что в случае бимолекулярного электрофильного замещения реакция идет со строгим сохранением геометрической конфигурации. [c.179]

    Конечно, эти три механизма нелегко различить всем им соответствует кинетика второго порядка, и два из них осуществляются с сохранением конфигурации [5]. Несмотря на множество работ, посвященных этой проблеме, известно лишь несколько случаев, когда можно однозначно сказать, что действительно имеет место какой-то один из трех механизмов, а не другой. Ясно, что отличить механизм 8е2 (с тыла) от механизмов 5е2 (с фронта) или 5е1 можно с помощью изучения стереохимии, и таких исследований известно довольно много. Подавляющее большинство реакций электрофильного замещения второго порядка происходят с сохранением конфигурации или характеризуются другими указаниями на фронтальную атаку, т. е. на механизмы 8е2 (с фронта) или 5е1. Например, при обработке цис-формы соединения 1 меченым хлоридом ртути(П) продукт 2 на 100 % представляет собой 1 ис-изомер. Поскольку в обоих продуктах реакции содержание меченого атома ртути приблизительно одинаково, это означает, что должна разрываться связь между ртутью и циклом (а такл<е другая связь Нд—С) [6]. Еще одним указанием иа фронтальную атаку явля- [c.409]

    В случае ртутьорганических субстратов обращения конфигурации не наблюдалось. Возможно, имеются и другие случаи атаки с тыла [13], которые не удалось идентифицировать из-за трудностей получения соединений с конфигурационно устойчивой связью углерод — металл. Соединения, хиральность которых обусловлена асимметрическим атомом углерода, входящего в связь углерод — металл, обычно трудно разделить на оптические антиподы, а будучи разделенными, такие соединения зачастую легко рацемизуются. Чаще всего удается разделить ртутьорганические соединения [14], поэтому больщая часть сте-реохимических исследований была выполнена именно на этих субстратах. Известно лишь несколько оптически активных реактивов Гриньяра [15], в которых единственным асимметрическим центром был бы атом углерода, связанный с магнием. Поэтому стереохимия электрофильного замещения при связи С—Жg установлена далеко не во всех случаях. Для одной из таких реакций, а именно для взаимодействия экэо- и эн(5о-изомеров 2-норборнильного реактива Гриньяра с НдВг2, приводящего к 2-нор-борнилмеркурбромиду, показано, что она происходит с сохранением конфигурации [16]. Вполне вероятно, что обращение конфигурации имеет место только в тех случаях, когда стерические затруднения препятствуют фронтальной атаке и когда электрр-фил не несет группу Ъ (см. выше). [c.411]


    Для выяснения стереохимии реакций электрофильного замещения при симметризации ртутьорганических соединений были использованы диастереоизомерные /-ментиловые эфиры а-броммеркурфенил-уксусной кислоты, в которых ртуть связана с асимметрическим атомом углерода. Реакция протекает по схеме  [c.330]

    В 50—60-х годах изучение влияния стереохимического (особенно конформационного) строения органических молекул на их реакционную способность продолжало оставаться одной из важных задач кинетики органических реакций. Уже в 1953 г. А. Н. Несмеяновым и О. А. Реутовым [298] были начаты исследования стереохимии электрофильного замещения у насыщенного углеродного атома на примере реакции ртутьорганических соединений с солями ртути. Д. Крам [299], изучая стереохимию электрофильного замещения углеродного атома на водород, показал, что течение реакции довольно значительно зависит от природы растворителя в слабо ионизирующих растворителях сохранилась конфигурация у углеродного атома (S 1), а в среде сильно ионизирующих растворителей (сильные электрофильные реагенты) наб.чюдается главным образом обращение конфигурации — механизм [c.122]

    Хотя идея о существовании переходного состояния была высказана еще Кекуле в 1858 г. [89, с. 17], теория переходного состояния стала разрабатываться примерно с середины 1930-х годов (см. гл. УНТ, 2). В 30-е же годы появились и попытки исследования стереохимии этих состояний. Так, Ингольд и Хьюз на основе изучения бимолекулярных реакций нуклеофильного замещения при насыщенном атоме углерода пришли к выводу, что в этом случае образуется переходный комплекс, в котором три заместителя, не участвующие в реакции, лежат в одной плоскости, а уходящий и вступающий заместители находятся по разные стороны от этой плоскости. По аналогии Хьюз и Ингольд распространили это представление и на бимолекулярные реакции электрофильного замещения. Однако в 50-х годах Реутов и сотр. показали на примере элекТро-филъного замещения с участием ртутноорганических соединений, что конфигурация переходного комплекса в этом случае сохраняется, и что предположительно комплекс имеет вид четырехчленного цикла. [c.177]

    Нейтральные комплексы. При взаимодействии ацетилацетона с гидратом КЬ Оз образуется трисацетилацетонат, который удалось разделить на й- и /-изомеры. Ацетилацетон, координированный в этом комплексе, вступает в различные реакции электрофильного замещения, такие, как хлорирование 151. При помощи спектров ЯМР были изучены стереохимия и процесс рацемизации цис- и транс-изомеров аси.мметричного трифторацетилацетоната это соединение исключительно устойчиво по отношению к изомеризации 1161. [c.452]

    Реакции обмена радикалами в ртутноорганических соединениях, в частности реакции изотопного обмена, сыграли большую роль в выяснении закономерностей механизмов электрофильного замещения у насыщенного атсма углерода. Именно на примере этих реакций впервые были осуществлены детальные исследования кинетики и стереохимии бимолекулярного ( 2) и мономолекулярного (5я1) электрофильного замещения. [c.8]

    Сравнительно недавно описано разделение гидроокиси етор-бутилртути с помощью производных миндальной кислоты [36а, б, 37а, в] и ее превращение по реакции анионного обмена в различные оптически активные соли етор-бутилртути. Обе группы авторов тем или иным методом изучили стереохимию реакции и установили относительную конфигурацию исходных веществ и продуктов реакций, образующихся в результате атаки различных электрофилов по асимметрическому атсму углерода во етор-бу-тильной группе. В пределах ошибки эксперимента реакции электрофильного замещения протекают с полным сохранением конфигурации по углероду, и все имеющиеся данные свидетельствуют в пользу механизма, не требующего промежуточного образования [c.131]

    Если в роли уходящей группы при реакции электрофильного замещения выступает один из атомов углерода, то структурное разнообразие таких групп позволяет использовать для генерации карбанионов большое число различных реакций. Многие специфические эффекты, связанные с конкретными структурными особенностями той или иной уходящей группы, де.лают стереохимию реакций электрофильного замещения сложной и интересной. Благоприятным обстоятельством является то, что многие закономерности поведения карбанионов, наблюдаемые нри реакциях дей-теро-водородного обмена (см. гл. 1П), обнаруживаются также и при таких реакциях, когда карбанион образуется в результате разрыва С — С-связи. [c.151]

    Число реакций электрофильного замещения у насыщенного атома углерода, протекающих с разрывом С — О-связи, невелико. Для исследования стереохимии такого замещения были изучены две реакции, каждая из которых приводит к образованию 2-фенилбутана (И) [26]. Первая из них — расщепление 2-бензил-окси-2-фенилбутана (XXIII) под действием очень сильных осно- [c.182]

    Область электрофильного замещения у насыщенного атома углерода значительно моложе своего антипода — нуклеофиль-вого замещения в жирном ряду. Начало исследований в этой области относится к 1957 г., когда появились первые работы по стереохимии и кинетике, направленные на изучение механизма электрофильного замещения. Причина столь позднего развития состояла прежде всего в трудности подбора подходящих объектов, так как в ряду алканов реакции с обычными электрофильными агентами либо не осуществлялись, либо имели радикальную природу. Однако после преодоления трудностей, связанных с подбором объектов, и по мере развития экспериментальной техники, и лрежде всего физико-химических методов исследования, исследование этой области стало проводиться огромными темпами, а благодаря усилиям ряда школ и лабораторий во всем мире (особенно в СССР, США, Англии и Бельгии) в настоящее время накоплен большой экспериментальный материал, позволяющий сделать определенные обобщения. Основополагающие работы в этой области выполнены С. Уинстейном, О. А. Реутовым, К. Ингольдом, Г. Насельским, Р. Десси, Ф. Дженсеном и их сотрудниками. [c.5]

    До недавнего времени основными объектами для изучения закономерностей электрофильного замещения у насыщенного атома углерода служили металлоорганические соединения [1], характеризующиеся благоприятствующей этим реакциям поляризацией связи С —М +, и прежде всего ртутьорганические соединения [2] в силу их доступности, стабильности и умеренной реакционной способности. Именно на примере ртутьорганических соединений впервые было осуществлено одновременное изучение кинетики и стереохимии электрофильного замещения у насыщенного атома углерода и сделаны выводы о механизме таких реакций [1]. Впоследствии круг используемых для этой цели металлоорганических соединений значитэльно расширился и включил производные раз- [c.5]

    Рассмотрен широкий круг вопросов, связанных с электрофильньш замещением у насыщенного атома углерода. Приведена классификация электрофильного замещения. Рассмотрена кинетика, стереохимия, нуклеофильный катализ, влияние структуры реагентов и растворителя на ход электрофильного замещения. Приведены факты одноэлектронного переноса в реакциях электрофильного замещения. Таблиц 1. Библ. 68 назв. [c.273]

    Металлоорганические соединения менее активных металлов не представляют интереса для целей органического синтеза. Мы приведем несколько реакций ртутьорганических соединений, которые представляют интерес с точки зрения изучения механизмов и стереохимии электрофильного замещения. Известны два типа ртутьорганических соединений КНдХ и R2Hg, которые существуют в равновесии в соответствующих условиях  [c.168]

    Мы получили [4, 5] возможность исследовать стереохимию электрофильного замещения у насыщенного углеродного атома вследствие того, что разработанная нами реакция бромнроизводиых жирного и жирноароматического рядов с металлической ртутью [c.742]

    Химическое отделение Заведующий J. I. G. adogan Направление научных исследований спектры ИК и комбинационного рассеяния электронный парамагнитный резонанс соединения галогенов и элементов группы фосфора реакции и стереохимия неорганических соединений фосфора, мышьяка и сурьмы катализируемые металлами реакции обмена дейтерия механизм термической и фотолитической деградации неорганических полимеров реакции свободных радикалов и атомов в газовой фазе кинетика термического разложения органических соединений с целью определения энергии связи электрофильное замещение в органических соединениях и кислотно-основной катализ реакции ароматических и гетероциклических соединений фосфорорганические соединения жиры и жирные кислоты липиды. [c.271]

    Изучение механизма электрофильного замещения в алифатическом ряду началось интенсивно проводиться только в конце 1950-х годов. Основой для выяснения закономерностей электрофильного замещения в алифатическом ряду явилась (и почти но утратила этого значения в настоящее время) реакция замещения ртути на ртуть подобное же значение имеет изучение нитрования для электрофильного ароматического замещения, проводившееся в 1920—1940-х годах. В 1958 г. было найдено, что алкильные соединения ртути могут быть разделены на оптические антиподы, что обеспечивало возможность исследовать стереохимию реакций замещения ртути. Первым примером стабильной оптически активной молекулы, содержащей один асимметрический атом углерода, у которого одним из четырех заместителей — мета.тл, был етор-бутилмеркурбромид втор-С,он был разделен на оптические изомеры через манделат, затем подобным же образом были разделены другие ртутьорганические соединения [217]. Это стереохимическое открытие привело к тому, что замещение в ртутьалкилах стало исходным пунктом исследования закономерностей электрофильного замещения. Наибольший интерес представляет применение этих соединений при изучении реакций замещения ртути на ртуть с применением меченых соеди- [c.463]

    Что касается предсказания стереохимии [218], то 8Е2-правило не может быть основано на принципе Паули, поскольку при бимолекулярном электрофильном замещении на изменяющейся атомной орбитали имеется лишь два электрона, т. е. нет избыточных электронов, способных с ними конкурировать, в отличие от нуклеофильного замещения, где наличие этого фактора заставляет располагаться обменивающиеся группы порознь друг от друга, что приводит к бимолекулярному замещению с инверсией. Каков бы ни был действительный путь бимолекулярного замещения, он должен соответствовать балансу сил, которые а priori невозможно оценивать простым и достаточно определенным способом. Что касается пространственной направленности реакций мономолекулярного электрофильного замещения, то в этом случае можно ожидать рацемизации, хотя в действительности точная геометрия карбаниона неизвестна, а если она пирамидальна, то неизвестна частота инверсии пирамиды. Внутримолекулярное электрофильное замещение должно происходить с полным сохранением конфигурации, поскольку переходное состояние циклическое, а цикл слишком мал, чтобы включать углы, обеспечивающие инверсию. [c.465]

    Исследованы кинетика, стереохимия и механизм реакции симметризации ртутноорганических соединений и обратной реакции. Несмеяновым, Реутовым и сотр. найдено, что симметризация оптически активных ртутноорганических соединений — диастереомеров /-ментиловых [1—4] и этилового [4] эфиров а-броммеркурфенилуксусной кислоты под действием аммиака — является реакцией второго порядка (как по RHgX, так и по NHg [5]) (8 2-механизм) и протекает с сохранением конфигурации у асимметрического атома углерода, затрагиваемого в ходе реакции, на основании чего ими высказано [1—3] правило о сохранении конфигурации при реакциях электрофильного замещения у насыщенного углеродного атома (ср. правило о сохранении конфигурации у ненасыщенного атома углерода при реакциях электрофильного и гомолитического замещения, выведенное на основании изучения поведения квазикомплексных ртутноорганических соединений см. гл. VI). [c.239]


Смотреть страницы где упоминается термин Электрофильного замещения реакции стереохимия: [c.182]    [c.337]    [c.356]    [c.143]    [c.3]    [c.377]    [c.219]    [c.1549]    [c.202]    [c.358]   
Основы органической химии (1968) -- [ c.327 , c.330 ]

Основы органической химии Часть 1 (1968) -- [ c.327 , c.330 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение электрофильное

Реакции замещения

Реакция электрофильного

Стереохимия

Электрофильное стереохимия

Электрофильность

реакции стереохимия



© 2025 chem21.info Реклама на сайте