Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты третичные

    I. К каким типам гидроксилсодержащих соединений относится троповая кислота а. Ароматический спирт б. Спирт первичный в. Спирт вторичный г. Спирт третичный д. Фенол е. Карбоновая кислота [c.192]

    I. К каким классам органических соединений относится стрептоцид а. Амид карбоновой кислоты б. Сульфамид в. Амин первичный г. Амин вторичный д. Амин третичный [c.244]


    Вместо карбоновых кислот для получения сложных эфиров можно использовать более активные этерифнцирующие агенты — ангидриды и хлорангидриды карбоновых кислот. Однако применение этих дорогостоящих веществ оправдано лишь в случаях, когда эфиры с трудом образуются при взаимодействии кислоты со спиртом, например при синтезе эфиров третичных спиртов. Широко используются на практике лишь циклические ангидриды днкарбоновых кислот — фталевой и малеиновой. [c.237]

    Взаимодействие третичного МДЭА с карбоновыми кислотами, компонентами ингибиторов коррозии, останавливается на стадии образования аммонийной соли, легко разлагающейся в зоне регенерации на исходные соединения. Взаимодействие же МЭА и ДЭА с высшими карбоновыми кислотами протекает до образования малорастворимых амидов карбоновых кислот по реакциям [c.28]

    Д. П. Коновалов [5, 6] показал, что органические карбоновые кислоты могут присоединяться к олефинам, имеющим третичные атомы углерода при двойной связи, а И. Л. Кондаков впервые применил для этой реакции катализатор — хлористый цинк [7, 8]. Он же синтезировал диметилбутадиен и открыл способность его подвергаться самопроизвольной полимеризации в каучук [c.4]

    Исследованиями Н. А. Меншуткина было показано, что легче всего сложные эфиры получаются из первичных спиртов и низкомолекулярных кислот. Вторичные спирты реагируют труднее. Эфиры третичных спиртов получаются с небольшим выходом, так как третичные спирты в присутствии минеральных кислот легко отщепляют воду, превращаясь в непредельные углеводороды. На ход реакции оказывает влияние и строение карбоновой кислоты. Чем больше число и объем радикалов в а-положении по отношению к карбоксильной группе, тем меньше скорость этерификации. Если в ароматических кислотах заместитель находится в о-положении по отношению к карбоксильной группе, то этерификация также проходит медленно и с плохим выходом. [c.165]

    В дизельном топливе, содержащем нестабильные фракции вторичного происхождения, при действии растворенного кислорода в условиях хранения и эксплуатации накапливаются низкомолекулярные продукты окисления (гидропероксиды, карбоновые кислоты, альдегиды и т. д.), вступающие в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, часть которых медленно коагулирует в нерастворимые соединения. Катализаторами реакций уплотнения являются кислотные продукты, поэтому введение в топливо веществ основного характера (третичных аминов), нейтрализующих кислоты и способных эффективно ингибировать радикально-цепное окисление, оказывает стабилизирующий эффект [11, 43, 46]. Анализ результатов [83-86, 99] свидетельствует, что этим требованиям отвечает основание Манниха ионола (Агидол-3). [c.183]


    Исследуя кислоты, полученные при окислении парафиновых углеводородов изостроения, можно составить представление о пунктах окислительной атаки кислорода. Последний действует преимущественно на точку разветвления, иначе говоря, на третичный атом водорода, В результате отщепления боковых цепей образуются в основном кислоты с прямой цепью. Тем не менее парафины с сильно разветвленным угле- родным скелетом продолжают оставаться непонгодными для промышленных целей сырьем [42], При их окислении получают главным обраэом низкомолекулярные и более глубоко окисленные карбоновые кислоты с числом атомов углерода меньше 12, не говоря уже о значительных количествах кислот с разветвленным скелетом. Эти кислоты обладают неприятным запахом и неудовлетворительным моющим действием. Технические нефтяные дистилляты, хотя и обогащенные парафинами, непригодны для получения жирных кислот, предназначенных для мыловарения, так как содержат нафтеновые и ароматические углеводороды, а также другие циклические соединения. [c.445]

    Часть спиртов и карбоновых кислот, содержащихся в нефтепродуктах, взаимодействуют с образованием сложных эфиров. Скорости этерификации в зависимости от химического строения спиртов располагаются в следующий ряд первичные > вторичные > третичные. Отсюда, по-видимому, среди нефтяных кислородных соединений будут встречаться главным образом сложные эфиры первичных спиртов и в меньшем количестве — вторичных спиртов. [c.212]

    Для этой цели могут быть использованы алифатические жирноароматические и ароматические кетоны. Значительно реже для получения третичных спиртов проводят реакции магнийорганических соединений с эфирами, ангидридами или галогеноангидридами карбоновых кислот  [c.214]

    Скорость образования эфира очень сильно зависит от строения карбоновой кислоты и спирта. Первичные спирты реагируют быстрее вторичных, а последние — быстрее третичных аналогично зависит скорость этерификации и от того, находится ли в карбоновой кислоте карбоксильная группа у первичного, вторичного или третичного атома углерода (Меншуткин). Наиболее легко взаимодействуют первые члены рядов — метиловый спирт и муравьиная кислота. [c.262]

    Амиды могут быть получены путем обработки нитрилов не только водой, но и соединениями, от которых в условиях реакции отщепляется вода. К донорам воды относятся серная кислота, а также кислородсодержащие органические соединения карбоновые кислоты, третичные, а иногда вторичные и первичные спирты и др. Реакции нитрилов с этими Соединениями обычно происходят в присутствии хлористого водорода (см. гл. 6, 7). [c.74]

    Если ос-углеродный атом в кислоте является третичным и, следовательно, атакуемый спиртом атом углерода сильно экранирован, целесообразно в качестве субстрата использовать алкилгалогенид, а в качестве нуклеофила — натриевую или серебряную соль карбоновой кислоты  [c.172]

    Эфир карбоновой кислоты Третичная аминогруппа [c.50]

    Кетены образуются при обработке хлорангидридов карбоновых кислот третичными аминами, лучше всего триметиламином, в инертном растворителе (эфир, бензол) при комнатной температуре. При этом [c.685]

    Разница в скоростях этерификации изомерных спиртов настолько велика, что этой особенностью пользуются для определения положения гидроксильной группы в молекуле. Такой же закономерностью обладают и гликоли так, скорость этерификации первичных гликолей 45—42%, вторичных 30—15%, третичных—около 1%. Фенолы по скорости этерификации близки к третичным спиртам (1,75-1-0,5%). Исследуя влияние строения карбоновых кислот на скорость реакции, Н. А. Меншуткин и для них установил те же закономерности этерификация кислот с метиленовой группой в а-положении к карбоксильной группе имеет скорость порядка 60—40%, со вторичным атомом 30—20%, с третичным 8—6%. Это было впоследствии подтверж-30  [c.467]

    Замена гидроксила карбоновых кислот остатком аммиака приводит к. амидам кислот. Наиболее хорошо известны и чаще всего применяются первичные амиды, но существуют также вторичные и третичные амиды, которые можно рассматривать как ди- и триацильные производные аммиака  [c.244]

    Для получения спиртов очень часто используют реакцию взаимодействия алкилмагниевых солей (раньше применяли также цинкдиалкилы) с альдегидами, кетонами или эфирами кислот. При этом из алкилмагниевых солей и указанных соединений образуются сначала продукты присоединения, которые затем при действии воды распадаются на спирт и основную соль магния. Из альдегидов и эфиров муравьиной кислоты образуются вторичные спирты, а из кетонов и эфиров всех других карбоновых кислот — третичные  [c.111]

    Ш. К каким классам органических соединений относятся продукты гидролиза лецитина в кислой среде , а. Спирт первичный б. Спирт вторичный в. Спирт третичный г. Карбоновая кислота д. Амин е. Соль амина [c.161]


    I. К каким классам органических соединений относится миндальная кислота а. Спирт первичный б. Спирт вторичный в. Спирт третичный г. Фенол д. Карбоновая кислота [c.186]

    Этим путем предлагается получать моноакрилат и монометакрилат этиленгликоля, являющиеся ценными мономерами, а также монотерефталат этиленгликоля, который можно непосредственно превращать в полимер поликонденсацией. Наиболее эффективные катализаторы реакций а-оксидов с карбоновыми кислотами — третичные амины, функционирующие в виде солей четырехзамещенного аммония. [c.290]

    I. К каким классам органических соединений относится рицин-олеиновая кислота а. Алкен б. Спирт первичный в. Спирт вторичный г. Спирт третичный д. Карбоновая кислота [c.189]

    Относительно синтеза углеводородов по Кольбе путем электролиза солей жирных кислот см. главу о парафиновых углеводородах. Присоединение алкилмагниевых соле11 к эфирам карбоновых кислот, приводящее к образованию третичных спиртов, обсуждено при описании последних. О синтезах альдегидов и кетонов из карбоновых кислот говори. юсь при описании этих соединений. [c.244]

    I. К каким классам органических соединений относится меро-хинен а. Амин первичный б. Амин вторичный в. Амин третичный г. Алкен д. Карбоновая кислота [c.265]

    Алкоголиз протекает легко при взбалтывании сложных эфиров предельных или непредельных карбоновых кислот при обычной температуре с 10-кратным количеством спирта с добавкой металлического калия или натрия. Особенно легко протекает переэтерифи-кация первичных алкокси-радикалов, в случае же вторичных и третичных спиртов необходимо нагревание. Аналогично проводится и алкоголиз сложных эфиров гликолей, причем с абсолютным спиртом в присутствии натрия получается 75—85% этиленгликоля  [c.545]

    В присутствии оснований (соли карбоновых кислот, третичные амины) ангидриды карбоновых кислот конденсируются с аренкар-бальдегидами, образуя ненасыщенные аренкарбоновые кислоты (реакция Перкина). Механизм реакции подобен альдольной конденсации  [c.571]

    Особое значение приобрели ПАВ в процессах подготовки нефти к переработке — обезвоживании и обессоливании. Для этой цели в Гиировостокнефти были проведены детальные исследования большого числа ПАВ [66]. Выли исследованы алкилсульфаты, алкиларилсульфонаты, соли карбоновых кислот, третичные ами-нофено.лы, четырехзамещенные соли аммония, полиэтиленглико-левые эфиры, полиглицериды кислот. Алкилсульфаты и алкиларилсульфонаты являются слабыми деэмульгаторами. Наиболее эффективными деэмульгаторами оказываются нолиэтиленглико-левые эфиры алкилфенолов. [c.46]

    Аминосоединенжя можно дифференцировать в соответствии со степенью их замещенности, проводя три титрования хлорной кислотой в уксуснокислой среде титруя исходный образец (определение суммы оснований) и аликвотные части образца после их обработки фталевым (перевод первичных аминов в нейтральные фталимиды и определение суммы вторичных и третичных аминов) или уксусным ангидридом (перевод первичных и вторичных аминов в ацетамиды и определение третичных аминов) [184, 195]. Такой подход в сочетании с восстановлением LiAlH использован для группового анализа нефтяных амидов и нитрилов карбоновых кислот [196], при этом амиды, в зависимости от их строения, восстанавливаются в первичные, вторичные или третичные, а нитрилы — только в первичные амины [197, 198). [c.25]

    В случае карбоновых кислот подобные свойства больше проявляются у сложных эфиров третичных спиртов, при синтезе и превращениях которых побочно образуются изоолефнны  [c.209]

    Ш. Какие новые функциональные грушш образуптся при взаимодействии гиббереллина с водой в 1) щелочной среде, 2) кислой среде а. Гидроксил первичный б. Гидроксил вторичный в. Гидроксил третичный г. Соль карбоновой кислоты д. Карбоксильная [c.154]

    Способность олефинов присоединять карбоновые кислоты увеличивается в обычном порядке. Этилен реагирует довольно трудно пропилен и высшие н-олефины в этой реакции обладают умеренной активностью. Изобутилен и другие третичные олефины относительно легко присоединяют карбоновые кислоты. Наиболее изучена реакция с уксусной кислотой ее проводят в присутствии серной кислоты как катализатора при несколько повыщенной температуре, а в случае низших олефинов — под повышенным давлением. Для этой реакции рекомендуют применять в качестве катализатора также трехфтористый бор. [c.200]

    Достаточно подробно исследованы реакции прямого получения эфиров нз карбоновых кислот н олефинов. Эти реакции были предсказаны Н. А. Меншуткиным [24] и впервые осуществлены Д. П. Коноваловым [251 для алкилирования уксусной кислоты олефинами с третичными атомами углерода. И. Л. Кондаков [26[ впервые предложил использовать для этих процессов 2пС1.2 в качестве катализатора. Несмотря на простоту, указанные реакции практически до сих пор не используются, так как не найдены соответствующие условия и активные катализаторы. Пропилен или бутилен с уксусной кислотой в присутствии хлористого цинка при 50 ат и 150° образует 25—27% пропил- или бутилацетата [27]. Из гептена с уксусной кислотой ири 300"" в этих условиях образуется гептил-ацетат. Амилен с уксусной кислотой в присутствии 2пС12 образует при обычной температуре амилацетат, но выход последнего невелик, так как значительная часть амиленов полимеризуется. Выходы эфиров зависят от констант диссоциации карбоновых кислот. Сравнительно сильная трихлоруксусная кислота СС1чС00Н настолько активна, что без катализатора в автоклаве при 100 через 1 час образует 88% соответствующего эфира. [c.664]

    Общие химические свойства спиртов. 1. Весьма характерным признаком, на основании которого можно различить первичные, вторичные и третичные спирты, является их отношение к окислителям и дегидрирующим средствам. При действия этих вещесгв первичные спирты окисляются до альдегидов, а затем до карбоновых кислот  [c.114]

    Третичные спирты обычно более устойчивы по отношению к окислителям. Если окисление все же совершается, то при этом происходит разрыв углероднойцепи и образуются карбоновые кислоты (или кетоны), содержащие мень-ш е 0 число атомов углерода, чем исходный спирт,.. Таким образом, по продуктам окисления спирта можно определить, был ли он первичны.м, вторичным или третичным. " - [c.115]

    Некоторые сложные эфиры, и особенно сложные эфиры третичных спиртов, получают действием хлорангидридов или ангидридов карбоновых кислот на алкоголяты, в частности на алкоголят магния (ROMg l)  [c.168]

    Окисление широко используется для получения карбоновых кислот, альдегидов, кетонов, а-оксидов, хинонов, N-оксидов третичных аминов и ряда других классов органических соединений. Имеется большой набор окислителей, различающихся по окислительному потенциалу, специфичности действия. В качестве окислителей широко используются кислород, перманганат калия, хромовый ангидрид, хромовая смесь, азотная кислота, диоксид свинца, тетраацетат свинца, диоксид селена, пероксид водорода, надкисло-ты, хлорид железа (П1). Окисление кислородом рассмотрено в разделах Радикальное замещение и Гомогенный и гетерогенный катализ . [c.199]

    I. К каким классам органических соединений относится просто-гландин EJ а, Аякен б, Циклоалкен в. Кетон г. Альдегид д. Спирт первичный е. Спирт вторичный ж. Спирт третичный з. Карбоновая кислота [c.188]


Смотреть страницы где упоминается термин Карбоновые кислоты третичные: [c.128]    [c.312]    [c.504]    [c.504]    [c.126]    [c.90]    [c.318]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.523 ]




ПОИСК





Смотрите так же термины и статьи:

Амиды карбоновых кислот алкильные третичные

Амиды карбоновых кислот из третичных аминов

Амиды карбоновых кислот третичные

Взаимодействие магнийорганических соединений с производными карбоновых кислот — синтез вторичных и третичных спиртов, альдегидов и кетонов

Карбоновые кислоты из третичных ненасыщенных углеводородов

Кислоты карбоновые с третичным радикалом, синтез

Третичный бутиловый эфир или хлор метилциклогексан карбоновой кислоты



© 2024 chem21.info Реклама на сайте