Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ксенон свойства

    В периодической системе все элементы составляют 7 периодов. Первый период включает 2 элемента — водород и гелий, т. е. свойства повторяются через 2 элемента, затем дважды свойства повторяются через 8 элементов — второй и третий периоды от лития до неона и от натрия до аргона. Начиная с калия до криптона и с рубидия до ксенона свойства повторяются через 18 элементов — четвертый и пятый периоды. Шестой период содержит уже 32 элемента. Седьмой период не закончен. Таким образом, периодичность в повторении свойств химических элементов неодинакова. Три первых периода называются малыми, остальные — большими. [c.56]


    Периодическое изменение свойств элементов представлено в периодической таблице современного вида. При расположении элементов в порядке возрастания атомных номеров и группировке на основании общих свойств они образуют семь горизонтальных рядов, называемых периодами. Каждый вертикальный столбец - группа элементов - содержит элементы с близкими свойствами. Группа лития (Ы), состоит, например, из шести элементов. Все эти элементы - крайне реакционноспособные металлы, образующие хлориды и оксиды общей формулы ЭС1 и Э2О соответственно. Так же, как хлорид натрия, все хлориды и оксиды этих элементов — ионные соединения. В противоположность этому группа гелия, расположенная по правому краю таблицы, состоит из крайне инертных элементов (к настоящему времени известны соединения только ксенона и криптона). Элементы группы гелия известны под названием благородные газы. [c.127]

    Какие же вещества являются элементами Первыми правильно установленными элементами были металлы-золото, серебро, медь, олово, железо, платина, свинец, цинк, ртуть, никель, вольфрам, кобальт, И вообще из 105 известных к настоящему времени элементов только 22 не обладают металлическими свойствами. Пять неметаллов (гелий, неон, аргон, криптон и ксенон) были обнаружены в смеси газов, остающейся после удаления из воздуха всего имеющегося в нем азота и кислорода. Химики считали эти благородные газы инертными до 1962 г., когда было показано, что ксенон дает соединения со фтором, наиболее активным в химическом отнощении неметаллом. Другие химически активные неметаллы представляют собой либо газы (например, водород, азот, кислород и хлор), либо хрупкие кристаллические вещества (например, углерод, сера, фосфор, мыщьяк и иод). При обычных условиях лишь один неметаллический элемент-бром-находится в жидком состоянии, [c.271]

    Мозли, расположить элементы в порядке возрастания их порядковых номеров, то обнаруживается, что некоторые химические свойства повторяются через определенные интервалы (см. верхнюю часть рис. 7-3). Так, химически инертные благородные газы (по крайней мере считавшиеся инертными до 1962 г., когда были получены соединения ксенона со фтором и кислородом), Не, Ые, Аг, Кг, Хе и Кп, имеют порядковые номера 2, 10, 18, 36, 54 и 86, т.е. расположены с интервалами в порядковых номерах 2, 8, [c.314]

    В пятом периоде наблюдается такая же картина сначала заполнение 5х-орбиталей, затем заполнение уровня с и = 5 прерывается заселением погруженных в общее атомное электронное облако 4 -орбиталей, которое соответствует построению второго ряда переходных металлов, и, наконец, заполнение 5р-орбиталей, завершающееся построением валентной структуры благородного газа ксенона, Хе 4 5> 5р. Общим свойством всех благородных газов является наличие у них заполненной внешней электронной оболочки х р. В этом и заключается причина упоминавшейся выше особой устойчивости восьмиэлектронных валентных оболочек (см. гл. 7). Запоздалое заполнение /-орбиталей (и /-орбиталей) обусловливает появление неодинаково длинных периодов в периодической системе первый период содержит 2 элемента, второй включает 8 элементов, а третий тоже только 8, хотя мог бы содержать 18 элементов (на уровне с и = 3 размешается 18 электронов), затем следует четвертый период с 18 элементами, хотя он мог бы содержать 32 элемента (на уровне с и = 4 размещается 32 электрона). [c.398]


    ТАБЛИЦА 21.2. Свойства соединений ксенона [c.287]

    Получены также другие производные ксенона в степени окисления -Нб — триоксид ХеОз, гидроксид Хе(ОН)б. Последние два соединения проявляют кислотные свойства так, реагируя с щелочами, они образуют соли ксеноновой кислоты, например  [c.494]

    Простые вещества. При обычных условиях благородные газы — бесцветные, без вкуса и запаха вещества с малой растворимостью в воде и органических растворителях. На живые существа они оказывают, подобно алкоголю, наркотическое действие, которое ослабляется из-за нх малой растворимости. Практически безвреден только гелий, заметно активен ксенон. Благородным газам свойственна более высокая электрическая проводимость, чем другим газам они ярко светятся при прохождении через них электрического разряда. Подвергнув высокому давлению замороженный ксенон, удалось превратить его в металл, проявляющий свойства сверхпроводника. [c.350]

    Между металлическими и окислительными элементами нет резкой границы. Утрата металлического характера неизбежно сопряжена с появлением окислительных свойств. Однако среди элементов встречаются-такие, у которых металлические свойства крайне ослаблены, а окислительные свойства выявлены еще недостаточно. Для таких элементов промежуточного характера было бы целесообразно использовать название металлоиды. К этому классу элементов могут быть отнесены по два элемента из каждого периода, а именно бор, углерод, кремний, фосфор, германий, мышьяк, сурьма, теллур, висмут, полоний. У всех этих элементов мы встречаемся с проявлением если не металлических, то во всяком случае ясно выраженных восстановительных свойств. Следует отметить, что даже у настоящих окислительных элементов (сера, селен, бром, иод, астат) также проявляются восстановительные свойства. В этом отношении от них резко не отличаются следующие за ними инертные элементы — криптон, ксенон, радон. Однако инертные элементы характеризуются полным отсутствием окислительных свойств. [c.35]

    Какой вид связи существует в кристаллах твердого ксенона Какими физическими свойствами обладает это вещество в кристаллическом состоянии  [c.83]

    В последнее время обнаружены восстановительные свойства у инертных газов криптона, ксенона и радона. [c.197]

    Нельзя сказать, чтобы исследования химических свойств этих соединений и теоретический анализ природы связи дали четкий ответ на вопрос, как же распределены электроны, например, во фторидах ксенона. Трудности применения методов молекулярных орбиталей и валентных связей обусловлены большим числом электронов в атомах ксенона и трудностью даже приближенного вычисления волновых функций. Все же большинство авторов, занимавшихся этой проблемой, считают, что низкие потенциалы ионизации инертных газов облегчают перенос заряда от атома ксенона к атому фтора, и поэтому в галогенидах инертных газов атом инертного газа является донором, а атом фтора или другого галогена — акцептором электрона. [c.199]

    Сжиженные инертные газы неон, аргон, криптон и ксенон являются простейшими по своим свойствам и типу межатомного взаимодействия жидкостями. Интерес к изучению их структуры связан с необходимостью дальнейшего развития теории жидкого состояния. Для этих веществ теоретические расчеты физических величин можно сделать более количественными, чем для других жидкостей. Притяжение атомов у сжиженных инертных газов описывается дисперсионными силами Ван-дер-Ваальса. Эти силы имеют квантовую природу. Своим существованием они обязаны нулевой колебательной энергии атомов. Не будь ее, нельзя было бы осуществить сжижение инертных газов, не существовало бы в природе парафинов, полимеров и многих других веществ с неполярными молекулами. Предпосылкой для появления дисперсионных сил является динамическая поляризуемость атомов и молекул, возникновение у них мгновенных диполей благодаря вращению электронов вокруг ядра. Электрическое поле такого диполя одной молекулы индуцирует дипольный момент в окружающих молекулах, что и приводит к появлению сил притяжения. [c.152]

    Свойства фторидов ксенона [c.410]

    ОКИСЛИТЕЛЬНЫЕ СВОЙСТВА ФТОРИДОВ КСЕНОНА [c.95]

    Еще совсем недавно предполагалось, что инертные элементы не обладают свойством вступать в химические реакции и образовывать истинные соединения. Были известны только их гексагидраты (Кг-бНаО, Хе-бНаО), т. е. соединения включения (клатраты), получающиеся в результате внедрения атомов криптона и ксенона в полости кристаллической структуры льда. Поэтому валентность инертных элементов считали нулевой и относили эти элементы к нулевой группе периодической системы. [c.401]

    Фториды ксенона проявляют окислительные свойства н по отношению к другим веществам, например  [c.161]


    Общая характеристика элементов. К благородным газам относятся гелий, неон, аргон, криптон, ксенон и радон. По своим свойствам они ие похожи ни на какие другие элементы и в периодической системе расположены между типичными металлами и неметаллами. [c.501]

    Однако в 1962 г. было получено первое химическое соединение инертного элемента — тетрафторид ксенона Хе, после чего химия благородных газов начинает развиваться быстрыми темпами. Особенно богата химия ксенона, соединения которого по своим свойствам сходны с соответствующими соединениями иода. [c.201]

    Выполнено значительное количество работ по выяснению поведения и свойств детонационных и ударных волн. Кистяковский и сотрудники [68] определили толщину волны, изучая поглощение рентгеновских лучей ксеноном. Джилкерсон и Дэвидсон [69] использовали для этой цели иод 1г. В более поздних работах было найдено, что реакционная зона имеет толщину около 5 мм. [c.410]

    Освоение эффекта Мёссбауэра позволило проводить измерения в пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантаноидов и актиноидов. Можно ожидать появления приборов, в датчиках которых используется высокая чувствительность твердых веществ к неуловимым следовым количествам реагирующих о ними веществ. Ведь при хемосорбции всего нескольких сотен атомов последних свойства твердого тела заметно изменяются, Сверхвысокочувствитмьными датчиками могут служить некото [c.11]

    Первое соединение благородного газа было получено Нейлом Бартлеттом в ] 962 г. Его работа вызвала сенсацию, поскольку она означала крушение одного из парадиг-мов-веры в то, что элементы семейства благородных газов совершенно инертны в химическом отношении. Вначале Бартлетту удалось получить соединение ксенона с фтором-наиболее реакционноспособным химическим элементом. Затем было получено еще несколько соединений ксенона с фтором и кислородом. Свойства этих веществ перечислены в табл. 21.2. Три простых фторида, Хер2, ХеЕ и ХеЕ , образуются при непосредственном взаимодействии между составляющими их элементами. Изменяя количества реагентов и условия реакции, можно получать то или иное из этих трех соединений. Кислородсодержащие соединения ксенона получают при взаимодействии фторидов с водой  [c.287]

    Аналогично метод Хюккеля указывает, что в ХеРа у атомов фтора o = —0,5. Такой расчет, конечно, не принимает во внимание перетягивание электронов более электроотрицательными атомами фтора. Учет этого фактора дает 6f Да — 0,7. Молекула Хер2 линейна и полярность связей не приводит к полярности молекулы в целом, тем не менее наличие значительных зарядов у атомов фтора отражается на свойствах ХеРа. Кристаллическая решетка этого соединения довольно прочна (теплота сублимации 12,3 ккал/моль) и построена подобно ионным решеткам — молекулы ХеРа расположены таким образом, что атомы ксенона окружены атомами фтора. [c.202]

    Применение в энергетике. Гелий применяется в ядерной энергетике как источник а-частиц (ядра гелия). Ксенон 54X6 обладает свойством поглощать тепловые нейтроны, поэтому также применяется в атомной энергетике. Благородные газы, преимущественно неон, используются для изготовления светотехнических приборов (маяков, рекламы и т. п.). Смесью аргона с азотом наполняют лампы накаливания. Жидкий гелий применяется для получения очень низкой температуры (—272,2 К), при которой у многих металлических веществ обнаруживается сверхпроводимость. [c.235]

    Составьте уравнения реакций гидролиза соединений ХеОр4 и ХеОгр2 и уравнения последующей нейтрализации продуктов реакции с помощью гидроксида цезия. На основе этих процессов обсудите кислотно-основные свойства соединений ксенона (VI). [c.118]

    Хер2 по своим свойствам похож на тетрафторид ксенона. [c.251]

    Триоксид ксенона XeOj характеризуется кислотными свойствами и, взаимодействуя со щелочами, об эазует соответствующие солеподобные ксенаты [c.251]

    В 1962 г. доказано, что криптон, ксенон и радон могут проявлять восстановительные свойства, окисляясь при определенных условиях фтором и шестифтористой платиной. Синтезированы различные соединения фториды, оксиды, оксфто-риды, кислоты и соли. [c.140]

    Общие скедения. Не, N0, Аг, Кг, Хе в состоянии простых веществ одноатомные газы. Из-за химической инертности они получили название инертных, или благородных, газов. Физические свойства благородных газов изменяются от гелия до ксенона в зависимости от размеров и масс их атомов. В соответствии с возрастанием деформируемости электронной оболочки в ряду Не—Хе растут сжимаемость и склонность к сжижению этих газов, в целом растет и их химическая активность. Первыми из соединений были получены клатраты Аг-бНгО, Хе-бНгО, Кг-бНгО. В клатратах отсутствуют обычные химические связи. Эти соединения образуются в результате заполнения одноатомными молекулами инертных газов полостей в структуре соединения воды, льда. [c.409]

    Клатраты. До сравнительно недавнего времени (60-е годы XX в.) химические свойства гелия, неона, аргона и других благородных газов даже не являлись предметом дискуссии. Эти элементы называли инертными газами, подчеркивая тем самым их полную неспособность к химическому взаимодействию, что объяснялось особой устойчивостью полностью завершенных П5 и пр-орбиталей. Однако уже в конце XIX в. вскоре после открытия инертных газов Вийяр, сжимая аргон под водой при О °С, получил кристаллогидрат примерного состава Аг-бНаО. Затем были получены аналогичные гидраты ксенона и криптона. Оказалось, что эти соедннения неус- [c.391]

    Важнейшим событием в развитии Периодической системы за последние годы явилось упразднение пулевой группы, которая была создана Менделеевым в 1903 г. для помеш,ения в нее элементов, которые в то время называли инертными газами. Открытие валентно-химических соединений ксенона и его аналогов и изучение их химических свойств показало, что благородные газы являются элементами главной подгруппы VIII группы Периодической системы. Д. И. Менделеев в Основах химии писал Периодический закон ждет не только новых приложений, но и усовершенствований, подробной разработки и свежих сил... По-видимому, периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещается . Эти пророческие слова творца Периодического закона и Периодической системы целиком и полностью оправдываются в настоящее время. Один из основоположников геохимии акад. А. Е. Ферсман писал Будут появляться и умирать новые теории, блестящие обобщения... Величайшие открытия и эксперименты будут сводить на нет прошлое и открывать на сегодня невероятные по новизне и широте горизонты,— все это будет приходить и уходить, но Периодический закон Менделеева будет всегда жить и руководить исканиями . [c.11]

    ДЛЯ элементов с более высокими атомными номерами. Пятый период содержит элементы от рубидия (НЬ) до ксенона (Хе) шестой период начинается с цезия (Сз). Нужно отметить, что шестой период включает 14 элементов (2 = 58—71) со сходными свойствами, составляющих группу редкоземельных элементов (или лантаноидов), электронная конфигурация которых соответствует заполнению 4/-поду-ровня. [c.35]

    В то же время известны химические соединения инертных элементов с ионной связью. Например, сильный окислитель — гексафторид платины Р1Ро обладает свойством отнимать электроны у атомов ксенона. Получающийся гексафтороплатинат ксенона Хе+[Р1Рв1" имеет ионную пространственную кристаллическую решетку. [c.404]

    Особо следует сказать о химии благородных газов. Их атомы содержат на внешнем уровне по 8 электронов (у гелия 2). Ранее считалось, что такие атомы не способны ни отдавать электроны, ни принимать их, ни образовывать общие электронные пары. Однако в 1962 г. было получено первое химическое соединение благородного газа —тетрафторид ксенона Хер4, после чего химия благородных газов начала развиваться быстрыми темпами. Особенно богата химия ксенона, соединения которого по свойствам сходны с соответствующими соединениями иода. [c.160]

    Вывод, что между атомами инертных газов существуют слабые взаимодействия химического типа, следует из данных о свойствах паров этих веществ и структуре кристаллов. В парах инертных газов обна-зужеиы димеры и в некоторых случаях — более сложные ассоциаты 30]. Энергия диссоциации молекул неона Ыеа составляет около 355 Дж/моль аргона Ага — около 1090 Дж/моль, ксенона — около 2920 Дж/моль, молекул НеМе — около 117 Дж/моль и т. д. [c.77]

    Пятый период системы элементов начинается с рубидия. При этом снова при незаполненных 4й- и 4/-обо-лочках начинает заполняться 5з-уровень, Оболочка Ай начинает заполняться после стронция в атоме иттрия, подобно тому как З -оболочка начинала заполняться в скандии. Завершается заполнение 4й-состояний в палладии Рс1 (1) (2) (3) (45)2(4р) (4й) , и пятый период заканчивается ксеноном Хе (1) (2) (3) (45)2(4р) (4й ) ° 55)2 (5р) . Валентный электрон цезия, оставляя пустыми оболочки 41 и 5 , занимает состояние 6з и, таким образом, начинает шестой период. После бария Ва(1)(2)(3) (48)2(4р) (4й ) °(55)2(5р) (2 )2 начинает заполняться оболочка М в атоме следующего элемента лантана Ьа(1)(2)(3)(45)2(4р)б(4 ) (58)2(5р)б(5 )Мб5)2. Таким образом, лантан трехвалентен. В следующих за ним не продолжается заполнение 5с/-оболочки, а начинает заполняться забытая оболочка 4/. На этой оболочке всего может разместиться 14 электронов [2 (2-3-1-1)]. В результате ее заполнение завершается на лютеции Ьи(1)(2)(3)(4)(58)2(5р)б(5 ) (б5)2. Эти 14 элементов весьма близки по своим свойствам к лантану. Их называют лантанидами, или редкоземельными. [c.318]


Смотреть страницы где упоминается термин Ксенон свойства: [c.500]    [c.668]    [c.222]    [c.147]    [c.108]    [c.638]    [c.424]    [c.228]    [c.505]   
Технология связанного азота Синтетический аммиак (1961) -- [ c.387 , c.388 ]

Общая и неорганическая химия (1981) -- [ c.489 ]

Основы общей химии Т 1 (1965) -- [ c.43 ]

Основы общей химии Том 3 (1970) -- [ c.262 ]

Основы общей химии том №1 (1965) -- [ c.43 ]




ПОИСК





Смотрите так же термины и статьи:

Изучение метаболических и токсических свойств растворимых в воде соединений ксенона. А. Дж. Финкель, К. Е. Миллер, Теоретическое исследование соединений благородных газов

Ксенон

Ксенон ксенон

Ксенон физические и химические свойства вклейка

Ксенон, свойства соединений

Окислительные свойства фторидов ксенона

Теплоемкость и другие термодинамические свойства тетрафторида ксенона. У. В. Джонстон, Д. Пилипович, Д. Е. Шихен

Фториды ксенона, получение и свойства. Введение и обзор Черник



© 2025 chem21.info Реклама на сайте