Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение очистки газов

    Гидромеханические процессы, используемые при переработке жидкостей и газов, а также неоднородных систем, состоящих из жидкости и мелко измельченных твердых частиц, взвешенных в жидкости (суспензий). Движение жидкостей, газов и суспензий характеризуется законами механики жидких тел — гидромеханики. К числу гидромеханических процессов относятся перемещение жидкостей и газов, перемешивание в жидкой среде, разделение жидких неоднородных систем (отстаивание, фильтрование, центрифугирование), очистка газов от пыли. [c.14]


    IV. РАЗДЕЛЕНИЕ ГАЗОВЫХ НЕОДНОРОДНЫХ СИСТЕМ Очистка газов в пылеосадительных камерах [c.467]

    Глава 8 посвящена промышленному применению разделения газовых смесей. В ней рассмотрены все основные процессы мембранного газоразделения, сопоставление с другими методами разделения и очистки газов, экономические аспекты и перспективы мембранного газоразделения. [c.7]

    С целью увеличения степени очистки газов смачивают поверхности осаждения, вводят в газ жидкость, чем достигают увлажнения и укрупнения частиц. Укрупнение частиц достигается также обработкой газа ультразвуком [5.2, 5.58] или воздействием электрического и магнитного полей [5.64]. Гидравлическое сопротивление электрофильтров 150—200 Па. Расход электроэнергии на 1000 очищаемого газа от 0,12 до 0,20 кВт-ч. В электрофильтрах улавливается пыль с диаметром частиц более 5 мкм. В результате разделения системы Г — Т образуется газ и твердый остаток, содержащий за счет сорбции на поверхности своих частиц молекулы газообразных соединений. Санитарная очистка газов от пыли данным методом, как правило, не обеспечивается. Уловленные частицы подлежат использованию либо дополнительной переработке. [c.471]

    Абсорберы, адсорберы и десорберы. Процесс абсорбции состоит в избирательном поглощении жидкостью (абсорбентом) целевых составных частей исходной газовой смеси. Путем абсорбции проводят разделение, очистку и осушку различных углеводородных газов. [c.136]

    Большое применение имеют цеолиты. Их используют в качестве селективных адсорбентов при глубокой осушке и очистке газов (в том числе природного газа) и различных органических жидкостей, для разделения газовых смесей (углеводороды и др.). Эффективность использования цеолитов обусловлена избирательностью их действия и легкостью регенерации (нагреванием). Цеолиты применяют и в качестве ионообменных веществ, в частности, в водоочистке. [c.378]

    Выходящее из нижней части колонны стабильное топливо охлаждается в теплообменниках, воздушном холодильнике и выводится с установки. Отбираемые с верха колонны углеводородные газы, отгон, вода после охлаждения поступают в сепаратор стабилизационной колонны, где происходит их разделение. Углеводородный газ после очистки от сероводорода используется в качестве топлива для печи установки. [c.143]

    Для разделения системы Г —Ж применяются волокнистые фильтры из синтетических волокон. Гидравлическое сопротивление 5—60 Па, эффективность улавливания аэрозолей, туманов выше 99 %. Скорость газа 0,5—1,5 м/с. Капли тумана и аэрозоли за счет сил адгезии прилипают к поверхности ткани и по мере накопления и укрупнения стекают в приемные емкости. Обработка газов ультразвуком и в электромагнитном поле увеличивает степень очистки. Уловленная жидкость содержит —в пределах растворимости — химические соединения, находящиеся в газе, и ее использование зависит от количества в ней загрязнений. Санитарную очистку газов метод, как правило, не обеспечивает [5.64, 5.67]. [c.474]


    Схема и параметры работы комбинированного метода (мембранное разделение и абсорбция) очистки газа с высоким содержанием сероводорода и диоксида углерода даны на рис. 8.21 ив табл. 8.12 [65]. [c.300]

    Книга предназначена для инженерно-технических работников нефтеперерабатывающей, нефтехимической и химической промышленности, занимающихся разделением, очисткой и химической переработкой углеводородных газов — ценного сырья для производства пластмасс, искусственных волокон и других синтетических материалов. [c.2]

    Силикагель широко применяют для очистки и обессеривания нефтепродуктов и масел, для улавливания из них продуктов полимеризации, для удаления ароматических углеводородов из бензина и керосина, в процессах разделения нефтяных газов. Силикагель используют в качестве адсорбента в хроматографии для разделения сложных смесей и количественного определения их компонентов, для выделения ценных веществ, для контроля чистоты технических продуктов и т. д. [c.12]

    По адсорбционным свойствам микросферические цеолиты близки к соответствующим таблетированным образцам. Освоение метода производства микросферических цеолитов в промышленном масштабе позволит осуществить ряд процессов разделения и очистки газов по непрерывной схеме в движущемся или псевдоожиженном слое адсорбента. [c.104]

    Процессы адсорбции щироко применяются для очистки е, осушки газов, для разделения смесей газов и паров, например смесей газообразных углеводородов, для улавливания из парогазовых смесей паров ценных органических веществ (бензола, бензина, ацетона и др.), или так называемой рекуперации летучих растворителей. Посредством адсорбции производят также очистку растворов от примесей. [c.713]

    Процесс извлечения этана можно считать криогенным, так как для его осуществления требуются специальные металлы и соблюдение мероприятий, связанных с низкими температурами. На рис. 133 показана приблизительная стоимость извлечения этана из природного газа. Эти данные не учитывают затрат на очистку газа, разделение продуктов извлечения н их хранение. Как видно из рис. 133, оптимальным, с точки зрения стоимости, является 60%-ное извлечение этана из гааа. Для этого применяются следующие основные способы непосредственное охлаждение газа абсорбция при низких температурах адсорбция на углях и охлаждение. [c.210]

    В различных отраслях народного хозяйства широко распространены процессы, в которых сыпучий материал движется компактной массой под действием силы тяжести в направлении относительно узкого выпускного отверстия. К таким процессам относятся производство чугуна в доменных печах, обжиг и термическая переработка твердых топлив и минерального сырья в шахтных и камерных печах, каталитический крекинг и пиролиз нефтяного сырья, разделение и очистка газов и жидкостей, их нагревание и охлаждение, выпуск сыпучих материалов из бункерных устройств, руды из обрушенных блоков при подземной разработке рудных месторождений и др. [c.4]

    Смеси низкокипящих углеводородов и газов На, N2, и СО можно разделять путем перегонки как при атмосферном давлении с применением специальных хладоагентов, так и при повышенном давлении. Если разделение проводят при повышенном давлении, то стремятся повысить температуру головки колонны до такого значения, чтобы можно было использовать обычные охлаждающие средства (см. разд. 5.4.5). Из-за того, что для перегонки под давлением необходима более сложная аппаратура, чаще применяют лабораторные и пилотные установки низкотемпературной ректификации. Методика проведения низкотемпературной ректификации разработана очень подробно. Созданы полностью автоматизированные установки для проведения низкотемпературной ректификации в интервале от —190 до 20° С. В этих установках применяют как насадочные, так и полые спиральные колонны. Во многих случаях отбираемые пробы дистиллята и кубового продукта анализируют методом газовой хроматографии (см. разд. 5.1.2). Низкотемпературную ректификацию используют для очистки газов, а также как сравнительную ректификацию, аналогичную промышленному процессу. Это относится прежде всего к очистке отходящих промышленных газов без концентрирования в них водорода и, главным образом, к очистке природного газа, например выделение гелия и азота из природного газа, что по-прежнему является трудной проблемой. [c.250]

    Высота слоя катализатора выбирается, исходя из заданного времени контакта. Очистка газа от катализатора проводится в циклонных сепараторах 2. По трубопроводу 5 продукты крекинга поступают на разделение. Катализатор из сепаратора 2 возвраш ается в кипящий [c.247]


    В справочном пособии даны расчеты основных процессов и аппаратов технологических установок газо- и нефтеперерабатывающих заводов по очистке, осушке и разделению углеводородных газов (нефтяных и природных). Приведенные примеры и справочный аппарат соответствуют требованиям проектных и поверочных расчетов процессов и аппаратов. [c.2]

    Применение такого рода мембран со сверхвысокой селективностью (со значением на смеси СО2-СН4 фактора разделения а в несколько тысяч единиц) позволяет существенно повысить эффективность очистки газа от кислых компонентов. [c.75]

    В табл. 41—44 даны примеры применения гиперсорбционного процесса. В табл. 41 показан результат разделения водорода и метана при очистке газов гидроформинга. [c.76]

    Молену./ярные сита производятся нескольких классов — диаметром пор около 4,5 и 12 A. Для молекулярных сит характерны высокая адсорбционная емкость нри повышенных температурах и низких концентрация.х извлекаемых компонентов. Молекулярные сита применяются для разделения смесей газов или ншдкостей по размерам молекул (например, для отделения нормальных парафиновых углеводородов от углеводородов изо-строения) для осушки газов и жидкостей для очистки газов и жидкостей от примесей при низкой их концентрации и др. [c.387]

    Используют следующие способы разделения осаждение частиц в гравитационном, электростатическом, центробежном поле или под действием сил инерции фильтрование запыленных газов через пористые перегородки улавливание частиц жидкостью (мокрая очистка). В последнем случае улавливание частиц может сопровождаться поглощением жидкостью растворимых компонентов газовой фазы, т. е. абсорбцией. Такой процесс называют комплексной очисткой газа. [c.225]

    Установки разделения предельных газов включают блоки ком-при Мирова.ния и 01хлаждения газов, стабилизации, щелочной очистки от сероводорода и диоксида углерода и разделения. [c.281]

    На рис. У-9 изображена упрощенная схема газофракционирующей установки для разделения предельных газов (без блоков ом-дримировання, охлаждения и очистки). Цри переработке деэтани-зированных головок стабилизации в составе газофракционирующих установок лет блоков стабилизации. [c.281]

    Хемосорбционные методы. Очистка газов водными растворами этаноламинов. При подготовке различных технолог [с-ских газов к переработке (в частности, пирогаза к разделению) используют хемосорбцию диоксида углерода этаполамицамн. [c.48]

    Для разделения систем Г—Т используют пористые, тканевые и зернистые фильтры. Очистку от крупнодисперсной пыли проводят в фильтрах, заполненных коксом, песком, гравием, насадкой различной формы и размеров. Бумажные и тканевые фильтры используются для очистки газов с низким содержанием пыли. Тканевые фильтры на основе шерсти и хлопка используются до температуры 100 С, на основе полимеров — до 250 °С, Сопротивление фильтра обычно составляет 500—1500 Па, а удельный расход элек- [c.472]

    Аварии, связанные с загазованностью атмосферы производственных помещений взрывоопасными и токсичными газами, происходили при разрыве в результате коррозии трубопроводов между холодильниками и маслоотделителями на газовых компрессорах, маслоотделителей и цилиндров вследствие их низкого качества изготовления, а также в результате проскока газа через фланцевые соединения и сварные швы трубопроводов и сосудов. Так, в производстве аммиака разорвался газопровод нагнетания первой ступени поршневого компрессора фирмы Сюрт , предназначенного для сжатия и подачи коксового газа в отделение очистки цеха синтеза аммиака и далее в агрегаты разделения коксового газа. Авария произошла на участке между компрессором и холодильником нагнетательного газопровода первой ступени компрессора. Причина аварии — цлохое качество сварного шва газопровода. [c.181]

    Установки разделения радиоактивных газов. Продуктами сгорания ядерного горючего кроме ядер тяжелых элементов являются изотопы благородных газов с различным периодом полураспада изотопов ксенона Хе и Хе всего соответствепно 126,5 ч и 9,2 ч, а у нриптона Кг— 10,6 года. Поэтому совершенно необходимо в проектах атомных электростанций и заводов по переработке ядерного горючего предусматривать выделение радиоактивных криптона и ксенона из циркуляционных и сбросных газов. И в этом случае лучшее решение — применение мембранной газоразделительной установки, высоконадежной и безопасной в работе. Создаются мобильные мембранные установки для очистки выбросных газов АЭС при аварийных ситуациях [99]. [c.318]

    Аналогичный расчет мембранного каскада для выделения криптона и ксенона из сбросных газов заводов переработки ядер-ното горючего показал, что для разделения 0,36 м ч смеси [Кг (1,02-10 мол. доли), Хе (4,07-10 мол. доли), Ог (0,21 мол. доли), остальное — N2] потребуется 26 рабочих ступеней, по 13 в исчерпывающей и укрепляющей части. Коэффициент деления потока 0 для исчерпывающей части — 0,385, для укрепляющей — 0,425. В результате разделения получают 0,0037, м /ч дистиллята (1,00-10 мол. доли Кг, 4,00-10 — Хе, 0,959 — О2, остальное— N2) и 0,3563 м ч кубового остатка (9,35-10 мол. доли Кг, 4,28-10 2 — Хе, 0,203 — О2, остальное — N2). Степень очистки газов и уровень радиации таковы, что поток можно выводить в атмосферу. Общая длина полых волокон из оиликонового каучука в подобной установке составляет 508 392 м. [c.319]

    Области применения абсорбционных процессов в в>омыш-ленности весьма обширны получение готового продукта путем поглощения газа жидкостью, разделение газовых смесей на составляющие их компоненты, очистка газов от вредных примесей, улавливание ценных компонентов из газовых выбросов. [c.102]

    Разделение углеводородных газов и для тонкой очистки воз,цуха и газов [c.148]

    Прямая перегонка и деструктивные процессы переработки нефти сопровождаются образованием газа, в котором в зависимости от содержания и природы сернистых соединений в сырье присутствуют в различных концентрациях сероводород и другие соединения серы (табл. 5.1). При наличии сероводорода в газе создаются условия для коррозии металлов, снижается эффективность каталитических процессов из-за отравления катализаторов. Прежде чем направить заводские газы на разделение, их как правило, подвергают очистке. Проведение очистки всегда повышает стоимость газов, однако возросший во всем мире спрос на серу в корне изменил экономические показатели процессов очистки газа. К прибыли, получаемой от реализации очищенного газа, прибавилась стоимость извлекаемой из него серы. В Каиаде, например, сера при различном содержании в газе, сероводорода рассматривается как основной, сопутствующий или побочный продукт, и в зависимости от этого распределяются затраты на очистку газа и производство серы [70]. [c.280]

    В ааключение следует отметить, что наиболее правильным и пер(. пективным решением задачи устранения выделений газов являе1ся пх сбор, разделение, очистка с последующим использованием в производстве. По этому пути теперь и идут при проекгировании новых технологических процессов. [c.251]

    Абсорбцию используют для разделения, очистки и осушки раз. тчсых углеводородных газов и, в частности, для удаления сероводорода и паров воды из циркуляционных газов установок ка1алитнческого риформинга и гидроочистки, а также для очистки масел и на1)афина, изв.течеиия бензиновых фракций из углеиодородиых газов и др. [c.345]

    Разделение коксового газа. Метод фракционированной конденсации с применением глубокого охлаждения используют для разделения коксового газа, а также для очистки конвертированного газа от оксида углерода после парокислородной конверсии метана. Разделение коксового газа конденсацией его компонентов служит одним из методов получения водорода или азотоводородной смеси. Попутно выделяют этиленовую и метановую фракции, а также фракцию оксида углерода. Эти побочные продукты служат сырьем для органического синтеза. [c.77]

    Рассмотрены основные процессь[ очистки природного газа от кислых компонентов (сероводорода, диоксида углерода и меркаптанов) и производство серы методом Клауса. Приведены классификация и технологические схемы установок очистки и разделения углеводородных газов. Изложены основные принципы выбора поглотителей для очистки гаэа и обоснована стратегия выбора оптимальных технологических режимов. Приведены классификация низкотемпературных процессов разделения углеводородных газов (низкотемпературная конденсация, ректификация, абсорбция и адсорбция) и особенности технологических схем соответствующих установок. Изложены основные этапы получения гелия из природного газа и представлены технологические схемы отечественных установок получения гелиевого концентрата и тонкой очистки гелия. [c.2]

    Цеолиты применяются для разделения смесей газов или жидкостей по размерам молекул (например, для отделения нормальных парафиновых углеводородов от углеводородов изостроения), для разделения азеотропных смесей, для тонкой очистки мономеров перед полимеризацией, для повышения октанового числа бензинов, для глубокой осушки газов, для очистки газов и жидкостей от примессй при низких концентрациях этих примесей и т. п. [c.716]

    Цеолиты. Цеолиты представляют собой пористые кристаллические алюмосиликаты со строго регулярной кристаллической структурой. Они использукэтся в промышленности для глубокой осушки н очистки газов и жидкостей, разделения смесей различных органических веществ, в качестве компонентов катализаторов 1341. [c.392]

    В качестве адсорбентов цеолиты применяют, например, для осушки и очистки газов, разделения смесей газообразных и жидких углеводородов и др. Группа цеолитов — адсорбентов общего назначения, характеризуется размерами входных отверстий внутренних полостей от 3 до 9А и мольным отношением 8102 АЬОз, достигающим 1,9—2,8. Условно такие цеолиты называются низкокремнеземистыми. К ним относятся цеолиты марок ЫаА, СаА, КА, АеА, КаХ, СаХ и др. [69]. [c.71]

    Примерами использования процессов абсорбции в технике могут служить разделение углеводородных газов па нефтеперерабатывающих установках, получение соляной кислоты, получение аммиачной воды, очистка отходящих газов с целью улавливания ценных продуктов или обезвреживание газосбросов и другие. [c.280]

    Мокрое разделение применяют главным образом для очистки газов (отделение пылей и туманов), но используют также при обработке суспензий в комбинации с другими способами разделения (промывка осадков при отстаивании и фильтровании). [c.240]

    Для более эффективного разделения твердой и жидкой фаз применяют гидроциклоны специальных конструкций, например мультигидроциклоны (рис. 8-4), аналогичные батарейным циклонам — аппаратам, широко применяемым для очистки газов (стр. 330). Мультигидроциклоны состоят из параллельно работающих элементов (гидроциклонов) диаметром 0— Ъ0 мм. Циклонные элементы сверху и снизу герметично закреплены [c.251]

    Результаты исследования диполофоретического разделения водных эмульсионных систем легли в основу разработки блока электрокоагу-лятора в схеме оборотного водоснабжения установки мокрой очистки газов [20,37,38]. [c.93]


Смотреть страницы где упоминается термин Разделение очистки газов: [c.2]    [c.159]    [c.5]    [c.436]    [c.4]    [c.163]    [c.96]   
Технология связанного азота Синтетический аммиак (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция газов и паров. Разделение и очистка газов

Альтернативные методы получения кислорода и азота (криогенный и адсорбционный). Производительность установок и достигаемая концентрация целевого компонента. Затраты на получение воздуха, обогащенного кислородом. Комбинирование мембранного и адсорбционного методов. Преимущества мембранного метода разделения воздуха у потребителя Мембранные методы разделения и очистки природного газа

Аппараты для вибрационной очистки и адсорбционного разделения газов

Дегидраторы при разделении и очистке газов

Конденсаторы-холодильники при разделении и очистке газов

Криогенная очистка и разделение водородосодержащих газов

Методы разделения и очистки газов

Насосы при разделении и очистке газов

Отстойные камеры. Принцип действия центробежных пылеосадителей Центробежная сила и фактор разделения. Скорость осаждения. Размеры циклонов и их к. п. д. Конструкция циклоном Мокрая очистка газов

ПОЛУЧЕНИЕ, ОЧИСТКА И РАЗДЕЛЕНИЕ ГАЗОВЫХ СМЕСЕЙ Получение сырого газа для синтеза

Прибор для очистки газов типа Установка универсальная лабораторная с автоматическим ведением и регистрацией процесса разделения и получения чистых веществ типа УЧВ

Принцип действия центробежных пылеосадителей. Центробежная сила и фактор разделения. Скорость осаждения. Размеры циклона и их Конструкция циклонов Мокрая очистка газов

Разделение газов

Разделение газовых систем (очистка газов)

Сепараторы при разделении и очистке газов

Теплообменники при разделении и очистке газов

Тонкая очистка газов с разделением потоков

Требования к осушке и очистке газа перед подачей его на низкотемпературное разделение

Трубопроводы при разделении и очистке газов

Футеровочные материалы при разделении и очистке газов



© 2025 chem21.info Реклама на сайте