Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидратация граница

    Определение реальных энергий (теплот) гидратации отдельных ионов. Энтропии гидратации ионов. С помощью модельных методов определяются химические энергии сольватации, так как В них не учитывается поверхностный потенциал на границе жидкость— вакуум XI- Поскольку пока величину нельзя ни изме-1)ить, ни рассчитать (она отвечает разности потенциалов между точками, расположенными в двух разных фазах), химическая энергия гидратации определяется с точностью до некоторой неопределенной постоянной. Рекомендуемые разными авторами значения /р10 для воды отличаются на 0,5 В, что может дать ощибку в определении энергии гидратации однозарядного иона порядка БО кДж-моль- . Вероятные значения лежат внутри =Р0,2 В. Многие авторы принимают В. Если это значение от- [c.62]


    При относительном перемещении фаз, из-за гидратации твердой поверхности и ионов, граница скольжения проходит на некотором расстоянии от твердой поверхности. В результате этого двойной электрический слой подразделяется на плотную (адсорбционную) и диффузную части (рис. 100). [c.330]

    Ясно, что один и тот же порядок проявляется в различных апротонных растворителях. Это естественно для разбавленных растворов, где различия в энергии сольватации для анионов Х и в органических растворителях и воде являются главными факторами, определяющими экстракционную способность. Однако для некоторых использованных солей (поскольку применялись различные катионы) границы растворимости в любой фазе, а также способность к гидратации, диссоциации и ассоциации могут изменить порядок экстракционной способности. Один из этих факторов, вероятно, обусловливает неожиданное положение бензоата в приведенной выше серии (ср. с табл. [c.30]

    Согласно соотношению (2) ближайшие к иону молекулы воды обмениваются чаще, чем молекулы НаО в чистой воде ( < ). Гидратация, когда А ,- > О, называется положительной, а когда А г < < О, —отрицательной. Границе между положительной и отрицательной гидратацией отвечает А ,- = О и x lx = 1. Величина А зависит от радиуса иона и строения его электронной оболочки. Так, для иона А 1,7 кДж/моль, а для иона Сз+ А — —1,4 кДж/моль ( = 17,9 кДж/моль). Явления положительной и отрицательной гидратации ионов исследуются методами ИК-спек-троскопии, ЯМР, радиоспектроскопии и др. [c.343]

    Наличием в воде поверхностно-активных веществ обусловлена также гидратация поверхностей газовых пузырьков в воде. В результате адсорбции на границе раздела фаз газ—вода химические реагенты ориентируются полярными группами в сторону воды и упорядочивают ее молекулы. Под воздействием адсорбировавшегося химического реагента весь пузырек окружается гидратной оболочкой. Причем гидратные оболочки отдельных полярных групп органических молекул препятствуют их предельному уплотнению в поверхностном слое и играют роль поверхностной пленки, занимая в них большие площади, чем молекулы поверхностно-активных веществ. [c.59]

    Используя данные по энергии ионизации, сродства к электрону, ионные радиусы и энергию гидратации, Клопман рассчитал для ряда катионов и анионов энергии внешних орбиталей распределение этих ионов по мере убывания энергии поразительно хорошо совпадает с ходом изменения степени жесткости (мягкости) ионов в водной среде (табл. В. 10). Приведенные в таблице данные следует сравнивать отдельно в ряду катионов и анионов. Для катионов жесткие кислоты имеют положительное значение энергии мягкие кислоты — отрицательное. Это распределение в основном согласуется с активностью соответствующих соединений в реакциях. Единственным исключением является протон, который представляет собой более жесткую кислоту, чем это следует из данных табл. В.Ю. В то же время теория верно, предсказывает, что Т1 + — более мягкий ион, чем Т1+. Причиной этого является П52-конфигурация электронов Т1+ (наличие инертной пары электронов). В последовательности анионов энергия Е имеет только отрицательное значение (около —10 эВ). Область энергии около 10 эВ является границей между жесткими и мягкими соединениями. [c.401]


    Анионы подходят к поверхности ближе, чем катионы. Во-первых, это объясняется тем, что анионы и катионы обладают разной химической энергией сольватации, т. е. Ф Так как энергия гидратации аниона Г меньше, чем энергия гидратации катиона К , то анионам I" легче подойти на более близкие расстояния к поверхности. При обратном соотношении химических энергий сольватации должен наблюдаться обратный эффект. Во-вторых, ионы взаимодействуют с ориентированным на границе раздела слоем диполей растворителя. Так, например, если диполи растворителя обращены положительным концом в сторону раствора (рфо < 0), то анионам легче подойти к этому слою, чем катионам. - [c.93]

    Если оценить константу по числу соударений электронов со стенкой металла-ящика в простой модели Зоммерфельда (с поправкой, вносимой особенностями границы электрод — раствор), то можно сравнить ток термоэмиссии при заданном потенциале ф с экспериментально наблюдаемыми скоростями электрохимических реакций при тех же самых значениях ф. Такое сравнение показывает, что наблюдаемые токи электровосстановления обычно на много порядков больше, чем г е. Аналогичный результат получается, если сравнивать энергию активации стадии разряда с работой выхода электрона в раствор, Поэтому необходимо предположить, что гидратация электрона происходит уже на расстоянии порядка 1,4 А от поверхности электрода (работа переноса электрона из металла в эту точку меньше, чем Однако образование гидратированного электрона в слое адсорбированных на электроде молекул воды, имеющем малую диэлектрическую проницаемость, представляется мало вероятным, особенно, если учесть весьма низкую энергию гидратации электрона ( 36 ккал моль). [c.293]

    Обмен ионами между фазами — не единственная причина возникновения двойного электрического слоя и скачка потенциалов на границе раздела фаз. Двойной электрический слой может образоваться в результате преимущественной адсорбции одного знака. Ионы противоположного знака притягиваются к поверхности электростатическими силами. Интересно, что двойной электрический слой адсорбционного происхождения может возникать на границе жидкость — воздух. Обстоятельное изучение этого явления провел А. Н. Фрумкин. Он установил анионы чаще адсорбируются на границе вода — воздух, чем катионы повышение гидратации ионов снижает их адсорбционную способность при адсорбции органических ионов выполняется правило Дюкло — Траубе. [c.82]

    Случай с АЕг = 0 и тг/т=1 соответствует границе между положительной и отрицательной гидратацией. [c.239]

    Повышение температуры действует на раствор так же, как и увеличение концентрации электролита. Кроме того, при изменении температуры меняется граница положительной и отрицательной гидратации, так как изменяется структура самой воды. [c.86]

    На характер изменения АЯ, влияет граница полной гидратации (ГПГ), т. е. концентрация при которой все молекулы воды, [c.216]

    Ниже этой границы в растворе находятся сольватированные ионы и свободный растворитель, структура которого изменяется с концентрацией. Выше этой границы в растворе свободного растворителя нет все его молекулы входят в ближайшее окружение ионов. Раствор при такой концентрации можно уподобить системе, состоящей из гидратированных ионов, соприкасающихся своими гидратными оболочками. Они осуществили расчет энергии гидратации ионов, претендующий, по их мнению, на возможно полный учет составляющих эффектов. При вычислениях кроме ион-дипольного и борновского взаимодействия были учтены  [c.273]

    Условие т г/т = 1 и А = О соответствует границе между положительной и отрицательной гидратациями. Для катионов щелочных металлов эта граница при бесконечном разбавлении раствора лежит меж- [c.276]

    Граница между положительной и отрицательной гидратацией зависит от давления и температуры раствора. По результатам исследований О. Я. Самойлова и Г. А. Крестова, с увеличением давления ближняя гидратация ионов Ыа" и К усиливается, а ионов ЫН 4 ослабляется. При этом отрицательная гидратация К сменяется положительной. Объясняется это уменьшением общей связности молекул воды, разрывом части водородных связей под действием внешних сил. Рост давления и температуры разрушают тетраэдрическую структуру воды. [c.276]

    Таким образом, стандартный энергетический уровень молекулы спирта в спиртовой фазе оказывается на 5,6 кДж/моль выше, чем на границе с водной фазой. Физически эта разность, не зависящая от длины цепи, соответствует энергии гидратации полярной ОН-группы спирта (рис. VI.7). По- [c.95]

    Иная картина наблюдается при адсорбции на той же поверхности раздела фаз маслорастворимых ПАВ, растворенных в жидкой углеводородной фазе. В этих условиях увеличение длины цепи молекул ПАВ приводит лишь к слабому падению их поверхностной активности, что связано с небольшим увеличением растворимости ПАВ в углеводородной среде по мере увеличения длины цепи молекул. Энергетика адсорбции ПАВ из углеводородной среды на границе раздела вода — масло определяется гидратацией полярных групп при их выходе из углеводородной фазы на межфазную поверхность. [c.88]


    Допустим, что каждая полярная группы способна экранировать углеводородное ядро. от контакта с водой на некоторой площади пг, вел ичина которой зависит не только от собственных размеров полярной группы, но и от характера ее взаимодействия с растворителем (гидратации). Величина а на границе мицелла — среда будет определяться степенью экранировки углеводородного ядра она тем больше, чем меньше степень экранирования. [c.229]

    Твердая Вода Органическая жидкость Газ Адгезия Гидратация Границы нет Поверхностное натяжение Межфазное натяжение Если нет взаимного растворения, то межфазное натяжение Адсорбция Поверхностное натяжени То же Границы не- [c.138]

    Механизм электролитической диссоциации, т. е. природа ионов, образующихся в системе электролит — растворитель и участвующих в переносе тока, стал предметом исследований лишь в последнее десятилетие. Причины несколько запоздалого обращения к столь важной проблеме заключаются, по-видимому, в том, что природа ионов, образующихся при электролитической диссоциации в водных растворах, часто представлялась априорно очевидной, и эта очевидность механически переносилась на неводные растворы. Углубленное изучение схемы возникновения электролитного раствора, в частности термодинамические исследования, показало, что даже в водных растворах установление чисел гидратации, границ ближней и дальней сольватации имеет решающее значение для полного описания электролитного раствора. В неводных же средах, где, в отличие от большинства водных растворов, в системе электролит — растворитель присутствует намного больше равновесных форм (см. схему (1—14)), определение природы и состава ионов имеет первостепенное значение для понимания процессов, происходящих в системе. Очевидно также и прикладное значение проблемы природы ионов в неводных растворах вряд ли процесс электроосаждення металлов из неводных растворов можно эффективно осуществлять, если не известна эта важнейшая характеристика системы. [c.57]

    Прежде чем перейти к рассмотрению и сопоставлению величин теплот и энергий гидратации отдельных,ионов, следует подчеркнуть одно обстоятельство, на которое вперкые обратили внимание Ланге и Мищенко (1930). При проведении цикла, лежащего в основе уравнения (2.1), свободные ионы переносятся из газовой фазы в жидкую межфазную границу с локализованным на ней поверхностным скач ком потенциала Каждый моль ионов совершает при этом электрическую работу, равную (где 2,Р — заряд 1 моля г-го [c.51]

    Из рис. 1У-25 видно, что положительно заряженные обратноосмотические мембраны задерживают положительно заряженные ионы и свободно пропускают отрицательно заряженные. Отрицательно заряженные— наоборот. Фильтрат, выходящий со стороны отрицательно заряженных мембран, представляет собой щелочь, со стороны положительно заряженных мембран — кислоту. При разделении Кононов обнаружено большое влияние на процесс теплоты гидратации ионов — чем больше различие в теплотах гидратации, тем больше для Кононов значения /Ср. Это объясняется, по-видимому, тем, что на данный процесс, названный электроосмофильтрацией (ЭОФ), большое влияние оказывает понный двойной электрический слой (ДЭС) на границе раздела связанный слой жидкости — объемный раствор. Наличие двух факторов — связанного слоя жидкости и ДЭС в основном и определяет направление и скорость процесса переноса (транспорта) ионов через заряженные электрическим током обратноосмотические мембраны. Соответственно значения /Ср должны зависеть от относительного вклада этих двух факторов в транспорт ионов, находящихся в разделяемом растворе. [c.199]

    Селективность пористых мембран. Обратимся к рис. IV-27, где показана зависимость концентрации Na l и КС1 в фильтрате от концентрации их в исходном растворе х. Вертикальная прямая 1 на рисунке соответствует той концентрации электролита, при которой воды в растворе достаточно лишь для заполнения первичной и вторичной гид-ратных оболочек ионов электролита, а прямая II — концентрации, при которой вся вода включена только в первичные гидратные оболочки, что соответствует границе полной гидратации (ГПГ). При расчете этих концентраций приняты следующие координационные числа гидратации лка+=6, /гк+ =6, лсг=8, с учетом, что с каждой молекулой воды в первичной гидратной оболочке соединяется 3 молекулы воды во вторичной оболочке [159]. [c.205]

    Когда ионы металла переходят в раствор (энергия гидратации ионов достаточна для разрыва связи между ион-атомами и электронами), на поверхности металла остается эквивалентное количество электронов (рис. 7), которые в раствор не переходят и сообщают металлу отрицательный заряд. 3)тот заряд вызывает электростатическое притяжение между положительно заряженными ионами металла, нерешедщими в раствор, и поверхностью металла. Указанные явления на границе металл — водный раствор электролита приводят к возникновению двойного электрического слоя, образуемого электрическими зарядами, находящимися на металле, и ионами противоположного заряда, располагающимися у поверхности металла в растворе, что приводит к установлению некоторой разности потенциалов между металлом и раствором электролита (рис. 8, а). [c.15]

    Тонко раздробленные пигменты также мигрируют к границе раздела масло — вода и образуют защитный слой вокруг капель. Все водные окислы (напрпмер, гидратированные формы пятиокиси ванадия, окиси железа и алюминия) поверхностно активны. Поэтому, помимо некоторого увеличения вязкости свежеприготовленной эмульсии, происходящего в процессе их применения, может наблюдаться дальнейший ее рост во время хранения, вызванный прогрессирующей гидратацией окислов. В конце концов, вокруг каждой капли образуется слой геля. Примером могут служить концентрированные эмульсии В/М, в которых окись алюминия (глинозем) размешана в водной фазе (Шерман, 1955с). Когда к водной фазе добавляют пропиленгликоль до концентрации 20%, эти изменения замедляются в зависимости от концентрации пропиленгликоля. При более высоких концентрациях пропиленгликоля образование слоя геля полностью подавляется. Другие полиспирты оказывают тот же эффект. [c.298]

    Различие в гидратации одновалентных катионов иллюстрирует схема, приведенная на рис VI, 5. Сплошная линия обозначает границу самого иона, а пунктирная — границу его гидратной оболочки. Из схемы видно, что ион лития гораздо более гидрати- [c.146]

    Адсорбционные скачки потенциала в водных растворах падают в ряду 8СМ">С10г>1 >Вг">С1 >Р , причем для аниона 8СЫ в 2 и. растворе его соли АЕ —90 мВ. Данный ряд соответствует увеличению химической энергии гидратации анионов. На границе водных растворов с незаряженной поверхностью ртути этот ряд нарушается анион 8СЫ" занимает место между 1 и Вг", анион СЮ — между С1 и Р. Этот результат указывает на то, что ряд поверхностной активности анионов на границе электрод — раствор обусловлен [c.92]

    Высокоосновный третичный гидросиликат кальция кристаллизуется в виде волокнистых (нитевидных) кристаллов. Последние образуют внешнюю сферу гидратных оболочек и поэтому чаще всего наблюдаются при микроскопических исследованиях. Видна отчетливая граница раздела между негидратированным ядром и первичным гидратом, а между первичным и вторичным ( внутренним ) гидратом и третичным ( внешним ) гидратом межфаз-. ной границы практически не наблюдается (рис. 9.4). Степень гидратации С3З при температуре 298 К в разные сроки составляет за 1 сутки — 25—35%, за 10 сут — 55—65, за 28 сут — 78— 80%. Размеры кристаллов гидросиликатов кальция менее 1 мкм, их общая удельная поверхность 350—450 м7г. Таким образом, при нормальных температурах и давлении и невысоких значениях В/Ц=0,4. .. 0,7 равновесные гидросиликаты кальция, образующиеся при гидратации 3S, имеют отношение a0 Si02=l,6. .. 3. В отдельных случаях отмечается образование также и афвиллита 3S3H3. [c.317]

    В растворах может протекать разрушение структуры растворителя под действием растворенных частиц или связывание растворенных частиц электролитов с молекулами растворителя (воды) в сольваты (гидраты). О том, что такие процессы начинают заметно проявляться, можно судить по отклонению коэффициента активности от 1 при некоторых определенных концентрациях вблизи границ полной сольватации ГПС (или гидратации — ГПГ). В общем случае сольватационные процессы [135] делят на физические, присущие всем системам, и на химические, обусловленные свойствами данной конкретной системы. Степень протекания физических сольватацион-уых процессов зависит от свойств растворителя и таких свойств растворенных частиц, как их заряд, дипольный момент, масса, магнитный момент, а также от кинетических параметров — скорости и момента количества движения. [c.91]

    Таким образом, стандартный энергетический уровень молекулы спирта в пи JTOвoй фазе оказывается на 1400 кал/моль выше, чем на границе с водной фазой. Физически эта разность, не зависящая от длины цепи, соответствуег энергии гидратации полярной ОН--группы спирта (рис. 24). Подобным же способом можно найти энергии гидратации других полярных групп органических соединений. [c.94]

    Для объяснения механизма замедляющего действия органических веществ на гидратацию мономинеральных вяжущих и цемента выдвинуто несколько предположений. Прежде всего—это поверхностные явления на границе раздела водяная фаза — исходное вяжущее и водная фаза—продукты гидратации [261, 292— 295], а также поддержание пересыщения за счет повышенной растворимости сахаратов кальция и изменения фазового состава новообразований в случае СдА. Последнее объясняется [291] большой термодинамической стабильностью С4АН19 в условиях пересыщения Са (ОН)2 в присутствии хорошо растворимого сахарата кальция. Согласно [261], сахара, проникшие в межслоевое пространство гексагональных гидроалюминатов, взаимодействуют Н-связью с гидроксильными ионами, молекулами воды и неорганическими слоями гидроалюминатов, мешая их превращению в СдАНв- Поэтому эффективность воздействия органических соединений на превращение [c.113]

    А. Е. Десовым, автором одного из основных трудов [432], посвященных вибрационной технологии бетона, увеличение прочности, плотности и водонепроницаемости бетона происходит за счет выделения пузырьков воздуха из него и компактного распределения частиц смеси в объеме. При этом А. Е. Десов обращает внимание на физико-химическую сторону явления, отмечает значение тиксотропного разжижения смеси при интенсивном вибрировании и перемешивании. При механическом воздействии каждая частица бетонной смеси начинает колебаться, вследствие чего на границе частиц с дисперсионной средой происходит тиксотропное разжижение смеси до состояния временной текучести. Эти изменения реологических свойств цементных растворов или бетонных смесей при воздействии механических колебаний позволяют добиться однородной смеси, а также увеличить степень гидратации цемента. [c.186]


Смотреть страницы где упоминается термин Гидратация граница: [c.223]    [c.384]    [c.472]    [c.472]    [c.256]    [c.79]    [c.277]    [c.202]    [c.159]    [c.274]    [c.162]    [c.165]   
Курс химии Часть 1 (1972) -- [ c.200 ]




ПОИСК







© 2025 chem21.info Реклама на сайте