Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глубина нормальная

    Ло — глубина нормального режима. [c.449]

    Более трехкратной глубины нормальных бороздок. [c.22]

    Нормальная нагрузка катализатора составляет примерно 18 л синтез-газа в час на 1 г рутения. Около 78% окиси углерода исходного газа превращается в жидкие и твердые продукты реакции, составляющие в сумме примерно 136 г/м . С 1 г рутения получают 0,24 г час продуктов синтеза. При более значительных удельных нагрузках и, следовательно, скоростях газового потока глубина превращения падает и образуется меньше продуктов реакции из 1 исходного газа. Общий выход с 1 г рутения возрастает до максимума, достигаемого при подаче 10 л синтез-газа в час на 1 г рутения. [c.132]


    При низкой степени полимеризации сырья полимеры состояли почти из чистой димерной фракции, при полимеризации на 50% две трети полимера составляла димерная фракция, а лри почти полной полимеризации сырья она составляла от 35 до 40 % от суммарного количества полимера. Из сказанного видно, что летучесть полимеров из нормальных олефинов можио контролировать путем изменения глубины полимеризации сырья, т. о. в непрерывном процессе, изменением коэффициента рециркуляции. Эти результаты находятся в резком противоречии с данными [24, 22 Ь]. которые были получены при применении 100 %-ной фосфорной кислоты как катализатора при полимеризации пропилена из пропилена нри этом образовалось сравнительно небольшое количество димера, а полимер состоял главным образом из тримеров. [c.195]

    В условиях данного эксперимента спирты отгонялись от непрореагировавших углеводородов в виде эфиров борной кислоты. Вполне возможно, что в промышленных условиях более целесообразным окажется применение иного способа отделения спиртов от углеводородов, например, экстракция селективными растворителями или адсорбция силикагелем. При изучении возможности использования спиртов оксосинтеза для производства натрийалкилсульфатов было установлено, что полученные спирты обеспечивают устойчивую глубину сульфирования в размере 90% и выше, а их сульфоэфиры характеризуются высокой моющей способностью. Низкая стоимость бензинов контактного коксования по сравнению с другими сырьевыми ресурсами обеспечивает весьма благоприятные технико-экономические показатели данного варианта производства высших жирных спиртов. Однако до сих пор ни советскими, ни зарубежными специалистами окончательно не выяснен вопрос о сравнительном качестве натрийалкилсульфатов, полученных на основе нормальных и изомерных спиртов. [c.194]

    Резьбовые соединения. Их применяют для газовых труб при невысоких давлениях в безопасных средах (вода, воздух, пар низкого давления). Газовые трубы соединяют на резьбе с помощью резьбовых муфт. Трубная резьба отличается от нормальной крепежной меньшим шагом и меньшей глубиной нарезки, поэтому она незначительно ослабляет стенку трубы. Резьбовые соединения для гидравлических систем высокого давления выполняют с конической резьбой, которая обеспечивает высокую герметичность соеди-нення. [c.258]

    В этом отношении особый интерес представляет Готландская котловина в Балтийском море, где, как и в оз. Киву, отчетливо выделяются три слоя поверхностный, промежуточный и глубинный (табл. 18). Следует отметить, что в глубинном (застойном) слое воды, аналогичном таковому в 03. Киву, отмечается содержание СО до 52 см /л. Превышение нормального содержания СО в 2 - 3 раза наблюдается в плохо вентилируемых котловинах и других водоемах. Так, по данным Н.И. Книповича (1938 г.), содержание свободного СО в Черном море на поверхности составляет 0,41 см /л, а на глубине возрастает до 4 см /л. [c.83]


    Значения 0(298) реакций (2), (3) и (5) практически равны значениям Д С (298), и выход продуктов при равновесии равен единице. Для реакций (1) и (4) Д О(298) близки к нулю, и выход продуктов очень мал. Однако химическое сродство определяет только возможную глубину процесса, но не характеризует полностью реакционную способность системы. Примером этого является смесь Нг и Оа, для которой Д О(298) л ДгО°(298) = —228,61 кДж, следовательно, реакция должна идти практически до конца. Опыт же показывает, что смесь На и Ог при нормальных условиях может существовать практически неограниченно долгое время без заметного образования воды. Таким образом, реакционную способность химической системы нельзя характеризовать только значением А Т). Термодинамическое условие протекания реакции Д С < О при постоянных Р и Т можно принять как термодинамический критерий реакционной способности химической системы. Это условие является обязательным, но не достаточным. Если в смесь На и Ог ввести катализатор в виде платиновой черни, то реакция заканчивается в течение долей секунды. Это указывает на то, что есть еще какие-то факторы, которые ускоряют химический процесс и тем самым дают возможность за короткий отрезок времени проявиться химическому сродству, или, наоборот, затрудняют реакцию, и термодинамические возможности не реализуются. Что же можно выбрать в качестве характеристики кинетического критерия реакционной способности химической системы Наиболее общим кинетическим критерием реакционной способности химической системы является скорость реакции. [c.523]

    С утяжелением сырья образование легких фракций снижается, содержание жидкой фазы в реакционной зоне увеличивается и пороговая концентрация асфальтенов может достигаться только при очень большой глубине крекинга. Чтобы установка термического крекинга работала нормально, глубина крекинга в печи тяжелого сырья должна быть ниже той, при которой достигается пороговая концентрация асфальтенов в жидкой фазе. При этом условии кокс практически не образуется, а стенки труб печи медленно покры- [c.130]

    Из рис. 116 видно резкое влияние молекулярного веса на глубину крекинга парафиновых углеводородов нормального строения. Столь резкое влияние нельзя объяснить увеличением числа связей угле род — углерод или числа вторичных атомов водорода. Не исключена возможность большей скорости крекинга однажды активированной молекулы высокомолекулярного углеводорода. Различная адсорбционная способность также может вносить свой вклад в подобного рода зависимость. [c.227]

    В целом независимо от геологического возраста вмещающих пород, как правило, с увеличением глубины залегания нефтей наблюдается постепенный переход от нефтей типа Б к нефтям типа А . Закономерности изменения суммарного содержания алканов и отдельно содержания нормальных и изопреноидных алканов представлены на рис. 8. Однако эта последняя закономерность проявляется не столь четко. Для большинства исследованных нефтей увеличение глубины залегания, а следовательно и ужесточение современных термобарических условий, сопровождается увеличением содержания алканов. Особенно резко их содержание возрастает до глубин 2000 м. Затем темп роста замедляется (рис. 8, а). При этом [c.26]

Рис. 8. Зависимость суммарного содержания алканов (а), а также отдельно нормальных (б) и изопреноидных (в) алканов от глубины залегания нефтей Рис. 8. Зависимость <a href="/info/331850">суммарного содержания</a> алканов (а), а <a href="/info/97298">также отдельно</a> нормальных (б) и изопреноидных (в) алканов от <a href="/info/403640">глубины залегания</a> нефтей
    Для каждого определенного по данным сейсморазведки зна1-чения интервальной скорости ( V ) рассчитьквают соответствующее данной глубине нормальное значение ( д) при допущении, что пластовое давление является нормальным по формуле  [c.105]

    Очень большая константа скорости обрыва цепи ( 10 л моль сек) свидетельствует о том, что фактическая скорость, с которой реагируют два полимерных радикала, приближается к скоростям диффузии молекул в растворе. При полимеризации, проводящейся в неразбавленной массе мономера, это часто ведет к очень интересным последствиям, а именно к тому, что по мере увеличения вязкости системы и повышения запутанности полимерных цепей скорость, с которой растущие цепи могут сближаться, снижается до меньшего значения, чем скорость, при которой они могли бы нормально реагировать снижается и скорость процесса обрыва цепей, который в конце концов начинает контролироваться диффузией. В результате этого кривая скорости для таких реакций полимеризации может быстро расти с увеличением степени превращения. Типичный пример показан на рис. 3. Это явление легко может привести к неуправляемым и почти взрывообразным реакциям, особенно потому, что в вязкой, быстро полимеризующейся системе тепло не может рассеиваться с такой же скоростью, с какой оно выделяется. Правильность этого объяснения, впервые предложенного Норришем и Смитом [116], подтверждается тем, что молекулярные веса полимеров увеличиваются в стадии ускорения полимеризации [ 144], а также путем прямых измерений ki и кр как функции глубины реакции методом вращающегося сектора. Так, например, при полимеризации в массе мономера метилметакрилата к1 может снизиться менее чем до 1% от начального его значения при 35%-ном превра- [c.128]


    Таким образом, можно с большой степенью приближения принять, что глубины гидрирования нормального и изонроиилбензолов в нссле-дованном интервале температур одинаковы. [c.279]

    Опытами установлено, что капиллярное притяжение изменяется с увеличением температуры, а следовательно, и с глубиной. При геотермическом градиенте, равном 30 л на 1° С, приблизительно на глубине в 5 тыс. м сила капиллярного притяжения уменьшится на половину в своей величине, а так как по данным ряда исследователей, например Д. В. Голубятникова, относящимся к Би-би-Эйбату, во многих нефтяных месторождениях геотермический градиент в два раза меньше нормального (для Биби-Эйбата он равен 12 м на 1° С), то указанное уменьшение произойдет в ряде случаев еще на меньшей глубине, примерно на глубине вЗ—4тыс. м. Кроме того, нужно принять во внимание, что поверхностное натяжение нефти с увеличением температуры падает медленнее, чем у воды, следовательно, на некоторой глубине силы поверхностного натяжения воды и нефти могут сравняться. У Эммонса указывается, что это произойдет на глубине 4—5 тыс. м и что на больших глубинах нефть в глинах и сланцах может находиться в диффузном состоянии, если только она не была вытеснена оттуда в пески в более ранний геологический период, когда соответствующие пласты могли залегать на меньшей глубине от земной поверхности, или же если нефть не была выжата силою давления. [c.189]

    Естественно, что при том или ином режиме, определяющем глубину крекинг-процессов, эти факторы должны находиться в стабильном состоянии. С.кедовательпо, для перехода на нормальный ре>1" м фаботы необходимо достичь заданных значений всех параметров и обеспечить возможность ре-гу.лировки каждого из них.  [c.188]

    Н.Б. Вассоевич выделил их как одну зону - позднего катагенеза. Следует обратить внимание на предположение В.А. Соколова и Н.Б. Вассоевича о том, что УВ образуются в зоне катагенеза, т.е. в термокаталитической зоне, при деструкции ОВ, которая, по их мнению, начинается при очень низких температурах, характерных для глубин в осадке примерно 50 м. Температура на этих глубинах не может превышать 10 °С, а, как установлено, деструкция ОВ начинается при температуре 145 — 330 °С и при этом в условиях нормального давления. При давлении, которое характерно для отложений, залегающих даже на небольших глубинах — несколько кило-мс- ров, деструкция ОВ в результате термокаталитических процессов, ведущих к образованию УВГ, может происходить лишь при температуре значительно превышающей 500 С, т.е. при температуре, которая в осадочном чехле не встречается. [c.5]

    С приведенным распределением УВГ в Черном море интересно сопоставить их распределение в толще воды с нормальным газовым режимом, например в Мексиканском заливе и северной части Атлантического океана, где наибольшее количество УВГ приурочено к глубине 30 — 50 м, т.е. к глубине вблизи подошвы интенсивного развития хлорофнльных водорослей (рис. 23). [c.62]

    К.Ф. Родионова, Е.П. Шишенина и другие исследователи пришли к выводу, что преобразование рассеянного ОВ зависит в основном не от глубины погружения осадков, а от фаций, в которых они формировались. Установлено, что наиболее преобразованное ОВ содержится в песчаных фациях, а наименее преобразованное — в сапропелях. Все типы осадков, формировавшихся в условиях придонного сероводородного заражения, по-видимому, содержат менее преобразованное ОВ по сравнению с ОВ осадков, образовавшихся в условиях нормального, кислородного режима придонных вод. [c.96]

    К экзотермическим реакциям относятся реакции гидрирования олефинов, гидрокрекинга нормальных и изопарафинов, пяти-и шестичленных нафтенов слабоэкзотермична изомеризация к-парафинов. Глубина этих реакций повышается с понижением температуры. [c.193]

    Ясно также, что сильно изомеризованы продукты разложения. Так, в образовавшихся при гидрокрекинге нормального гексадекана нижекипяших углеводородах доля изомеров обычно выше 0,55 и слабо меняется с изменением глубины превращения сырья. [c.191]

    На рис. 5.1 и 5.2 представлены фафические показатели, характеризующие процесс переработки бензиновой фракции 62-140 С на катализаторе СГ-ЗП. Анализ полученных данных свидетельствует о сложной взаимосвязи между технологическими параметрами процесса и глубиной протекания основных реакций (дегидрирования и дегидроизомеризации нафтеновых углеводородов и гидрокрекинга нормальных парафиновых углеводородов), что, в свою очередь, определяет выход стабильного бензина и его качество. Например, выход и антидетонационные свойства стабильного катализата при осуществлении процесса при температуре 420 и 460°С с объемными скоростями подачи сырья соответственно 2 и 5 час практически одинаково, в то время как выход ароматических углеводородов при темперагуре 460 С выще на 11% мае. Таким образом, регулируя параметры процесса и тем самым изменяя глубину протекания основных реакций процесса, можно в достаточно щироких пределах изменить качество получаемого катализата, в частности, содержатше ароматических углеводородов и октановое число. [c.127]

    В ГрозНИИ разработан процесс, совмещающий обезмасливание парафинового дистиллята с фракционной кристаллизацией парафина, предусматривающий полный противоток растворителя по отношению к сырью и позволяющий получать широкий ассортимент парафинов с температурой плавления от 45 до 68 °С [75, 76]. Этот процесс включает три ступени фильтрования, предназначенные для получения глубокообезмасленного парафина с температурой плавления 52—54 °С, который затем подвергают фракционной кристаллизации на четвертой и пятой ступенях фильтрования. Такой процесс позволяет получить высокоплавкий парафин с температурой плавления до 58°С и низкоплавкий — с температурой плавления 50—52 °С. Одним из условий эффективности этого процесса является ограниченное содержание масла в растворителе. Достоинством его является не только гибкость, но и повышенное содержание нормальных парафиновых углеводородов как в высокоплавком (95,8% масс.), так и в низкоплавком (92,1% масс.) парафинах. Это объясняется раздельной кристаллизацией твердых углеводородов, при которой изопарафины с длинными прямыми участками цепи и нафтены с длинными боковыми цепями кристаллизуются в последнюю очередь. Разработке процесса обезмас-ливания с последующей фракционной кристаллизацией парафина предшествовали теоретические исследования [7, 64], в результате которых предложены уравнения, позволяющие с учетом требуемой глубины обезмасливаиия парафина и содержания масла в исходном сырье определять среднюю концентрацию масла в жидкой фазе и затем оценить коэффициент концентрирования на каждой стадии вакуумного фильтрования (образование осадка, его холодная промывка и подсушка), а следовательно, и общий концентрирующий эффект вакуумного фильтра. [c.160]

    Реакционная способность химической системы при заданных условиях характеризуется скоростью и возможной глубиной химической реакции. Направление и глубина химической реакции определяются законами химической термодинамики. Согласно второму закону термодинамики условия направленности и равновесия химических реакций при постоянных Я и Г записываются в форме О (см. гл. X). В качестве меры химического сродства реакции принимается значение нормального (стандартного) сродства Afi° 298) (см. 75). Нормальное сродство мэжет быть меньше и больше нуля. Термодинамически наиболее вероятны реакции, у которых значения нормального сродства наиболее отрицательны. По значению (298) можно судить о вероятности той или иной реакции при парциальных давлениях (активностях) исходных и конечных продуктов, равных единице. Однако не следует делать вывод, что реакция вообще неосуществима, если А ° Т) > 0. Изменив парциальные давления начальных или конечных продуктов, можно создать условия, когда А О(Т) будет меньше нуля, и реакция пойдет слева направо. В табл. 28 привета б л и ц а 28. Степень превращения исходных веществ (х) и (2Я8) процесса, протекающего до равновесного состояния при отсутствии продуктов реакции в исходной системе [c.522]

    Пущенная в эксплуатацию в ноябре 1987 г. вакуумная колонна нормально и стабильно работала при всех зафиксированных вариантах нагрузки по сырью (мазут арланской нефти) и по режиму ректификации. Давление в зоне питания колонны составило 20 - 30 мм рт. ст. (2,7-4,0)-103 Па, а температура верха - 50 - 70 "С, конденсация вакуумного газойля на насадках за счет циркуляционного орошения была почти полной суточное количество конденсата легкой фракции (180 - 290 С) в емкости-отделителе воды составило менее 1 т. В зависимости от требуемой глубины переработки мазута колонна может работать с подогревом его в вакуумной печи или без подогрева за счет самоиспарения сырья при глубоком вакууме, а также в режиме сухой перегонки. Отбор вакуумного газойля ограничивался высокой вязкостью арландского гудрона и составлял 10 - 18% на нефть. [c.53]

    Таким образом, олефины, образующиеся при термическом разложении парафинов, оказывают определяющее влияние на кинетику реакции. При этом для низших (Сз —С5) парафинов обрыв цепей при взаимодействии радикалов с пропиленом приводит к са-моторможению реакции. Для парафинов Се и выше начиная с очень небольшой глубины распада исходного нормального парафина кинетика реакции не изменяется с ее глубиной начальный нестационарный период обычно эспериментально незаметен. [c.66]

    В широко применяемых катализаторах риформинга платина нанесена на окись алюминия, обработанную галоидом (хлором или фтором), и юислотная активность катализатора определяется содержанием в нем этого галоида. При низкой кислотной активности катализатора глубина ароматизации циклопентанов мала и катализат риформинга содержит много нормальных парафинов, выход его велик, но октановое число невысокое. При высокой кислотной активности катализатора парафиновые углеводороды в условиях риформинга изомеризуются настолько быстро, что уже в начальных стадиях процесса достигается равновеоие парафины изопарафины и далее идет интенсивный гидрокрекинг. Кроме того, высокая кислотная активность приводит к ускорению изомеризации [c.253]

    Ниже излагаются результаты наших исследований по установлению оптимального режима гидроочистки сырья каталитического крекинга, а также описаны опыты по каталитическому крекингу сырья с различной глубиной очистки. Гидроочистку проводили на пилотной установке с системой циркуляции водородсодержащего газа при давлении 5 МПа, циркуляции водородсодержащего газа (при нормальных условиях) 800 л/л сырья и объемной скорости подачн сырья 0,5 1,0 2,0 5,0 и 10,0 ч . На каждой объемной скорости опыты проводили при 350, 380, 410 и 430 °С. В опытах применяли образец промышленного алюмокобальтмолибденового катализатора, сырьем служил вакуумный газойль из арланской нефти. [c.196]

    Общая концентрация циклоалканов в нефтях тина несколько меньше концентрации алканов. Циклоалканы в основном представлены MOHO- и бициклическими соединениями, причем содержание моноциклоалканов ча]оа е равно или больше содержания бицикланов. Нефти этого типа наиболее распространены в природе и встречаются во всех нефтегазоносных бассейнах Советского Союза, в отложениях любого геологического возраста, чаще всего на глубине свыше 1500 м. По классификации А. А. Карцева, они относятся к палео-тинным нефтям. Нефти типа А — это основные высокодебитные промышленные нефти. Эти нефтеносные месторождения, такие, так, например, Ромашкино, Самотлор, обычно представлены нефтями этого типа. Благодаря большой распространенности нефтей тина А этот тип, конечно, не может быть описан одним видом нефти, хроматограмма которого приведена на рис. 1. На этом рисунке изображен лишь наиболее часто встречающийся подтип нефти А с достаточно равномерным распределением нормальных алканов. Однако существуют и другие подтипы. Первый из них характеризуется тем, что концентрация нормальных алканов выше jo значительно более низкая (как, впрочем, и количество фракций, выкипающих выше 350 С). Этот тип может быть назван катагенно преобразованным (часто встречается в виде первичных газовых конденсатов). Для другого подтипа нефтей А , напротив, характерны уже высокие концентрации нормальных алканов выше Сго и весьма низкие концентрации изопреноидных алканов. Этот подтип может быть назван парафинистым. Типичная хроматограмма высокопарафинистой нефти приведена на рис. 5. [c.21]

    Нефти тиаа по групповому составу относятся к нефтям нафтенового или нафтено-ароматического основания. Они, как правило, содержат мало легких фракций. Характерной чертой нефтей этого тина является полное отсутствие нормальных и изопреноидных алканов и малое количество других разветвленных алканов (4— 10%). Среди циклоалканов наблюдается преобладание бицикличе-ских над моноциклическими углеводородами. Нефти типа Б чаще распространены в кайнозойских отложениях многих нефтегазоносных бассейнов Советского Союза на глубинах 500—1000 м. Наиболее характерными нефтями являются нефти Южного Каспия и Севера Западной Сибири (месторождения Грязевая Сопка, Сураханы, Балаханы, Русское и др.). По классификации Карцева [12], они относятся к кайнотипным нефтям. [c.25]

    Постоянство температуры мазута на выходе из печи является решаюп1 им для постоянства нормального режима вакуумной установки, так как колебания температуры мазута в большой степени сказываются на глубине отбора фракций. [c.197]


Смотреть страницы где упоминается термин Глубина нормальная: [c.199]    [c.144]    [c.157]    [c.268]    [c.63]    [c.171]    [c.12]    [c.54]    [c.17]    [c.130]    [c.700]    [c.63]    [c.199]    [c.200]    [c.8]    [c.51]    [c.490]    [c.24]    [c.27]   
Справочник по гидравлическим расчетам (1972) -- [ c.110 ]

Справочник по гидравлическим расчетам Издание 5 (1974) -- [ c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Глубины



© 2025 chem21.info Реклама на сайте