Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация других мономеров в массе

    Блочную полимеризацию стирола в отличие от полимеризации других мономеров производят без добавления инициатора в атмосфере азота (постепенным нагреванием до 220° С). Процесс полимеризации непрерывный. Его сначала проводят в цилиндрическом алюминиевом полимеризаторе с мешалкой и рубашкой при 75— 90° С здесь масса сильно загустевает, и отсюда она медленно стекает в расположенную ниже высокую колонну из нержавеющей стали. Колонна снабжена рубашками и змеевиками для нагревания высококипящим теплоносителем. По мере опускания вниз температура массы постепенно повышается. Общая длительность процесса — 65—75 ч. Из колонны массу подают шнеком в воду в ней образуются прозрачные стержни полистирола, измельчаемые затем в дробилке. Производительность—до 20000 т в год. Молекулярная масса полимера — 150 000—200 ООО. [c.323]


    Эмульсионная полимеризация метилметакрилата принципиально не отличаются от эмульсионной полимеризации других мономеров. В качестве эмульгаторов применяют соли органических и сульфокислот. Инициаторами процесса являются окислительно-восстановительные системы. Соотношение воды и мономера обычно принимается (1- 3) 1, количество эмульгатора составляет примерно 3%, а инициатора и ускорителя по 0,1—1% от массы мономера. Полимеризатором служит реактор обычного типа с рубашкой и мешалкой. В него из мерников загружают деионизированную [c.139]

    Если полимеризация проводится в воде, содержащей не просто небольшое количество диспергирующего вещества, а довольно большое количество мыла или другого поверхностно-активного вещества, то достигается гораздо более тонкое диспергирование продукта, и часто продукт реакции получается в форме стойкой эмульсии или латекса. Эти условия эмульсионной полимеризации, хотя и разработаны более или менее эмпирически, как доказано, сильно изменяют кинетику полимеризации и подробнее обсуждаются ниже. Они допускают образование полимеров высокого молекулярного веса из таких веществ, как бутадиен, радикальную полимеризацию которого не удается провести удовлетворительно в массе. Этот метод имеет очень большое техническое значение для производства синтетического каучука и нри промышленной полимеризации многих других мономеров. Однако он имеет тот недостаток, что трудно [c.119]

    Термическое инициирование характерно для полимеризации стирола и метилметакрилата. В какой-то мере оно присуще и полимеризации других мономеров, так как при нагревании происходит гомолитический разрыв связей в молекуле мономера и образование осколков со структурой свободных радикалов. Однако только в случае стирола эта реакция имеет практическое значение полимеризацию в массе при температуре выше 70 °С ведут за счет термической реакции. Точный механизм этой реакции до сих пор не ясен, хотя неоднократно, начиная с 1936 г., привлекал внимание исследователей. Полагают, что скорость инициирования имеет второй порядок относительно концентрации стирола и соответственно скорость полимеризации равняется [c.76]

    В качестве защитного коллоида ПВС щироко употребляется в процессах эмульсионной и суспензионной полимеризации ВА, стирола, винилхлорида и некоторых других мономеров. Особенности эмульсионной полимеризации ВА в присутствии ПВС детально рассмотрены в гл. I. Для суспензионной полимеризации стирола используется ПВС, содержащий 10— А% (масс.), а винилхлорида — 22—27% (масс.) ацетатных групп. [c.160]


    Полимеризация других мономеров в массе 143 [c.143]

    Относительная роль реакции гибели и передачи цепи меняется не только при изменении химического состава или природы каталитических систем, но и при изменении температурной области полимеризации в одной и той же системе [62, с.114], а также концентрации катализатора в реакционной смеси. Это находит отражение в величинах АЕ, которые изменяются при полимеризации изобутилена (как и ряда других мономеров) в весьма широких пределах, охватывая также и отрицательные значения. В частности, низкотемпературной ветви кривой Аррениуса (от 85 до 175 К), характеризующей полимеризацию изобутилена под действием А1С1з в СН3С1, отвечает АЕ = -0,84 кДж/моль, причем степень полимеризации Р в этих условиях не зависит от концентрации мономера. С повышением температуры Р становится чувствительной к концентрации мономера, а АЕ =- 15,1 кДж/моль [268], что обусловлено протеканием и других, помимо передачи цепи на мономер, реакций ограничения роста цепи. я-Алке-ны обычно не влияют на молекулярную массу, но уменьшают выход полиизобутилена, являясь ядами. Алкилгалогениды снижают молекулярную массу, не влияя на выход полимера, что характерно для агентов-передатчиков материальной цепи. Многие соединения проявляют в большей или меньшей степени оба эффекта, например Р-алкены. На рис.2.13 обобщены экспериментальные данные о кинетических параметрах реакций отравления и передачи цепи при полимеризации изобутилена [68, с. 146]. Чистые яды (пропилен, бутен-1, пен-тен-1 и т.п.) и чистые передатчики цепи попадают на горизонтальную и вертикальную оси соответственно. Как видно, достаточно эффективными передатчиками цепи являются грег-бутилхлорид и трет-бутилбромид. [c.117]

    Разработаны методы получения строительных конструкций, в которых отходы полимеров вводят на стадии полимеризации другого мономера. Так, отходы ударопрочного полистирола растворяют в метилметакрилате в соотношении 1 1,5, разливают в формы и полимеризуют в них в присутствии 3 ч. (масс.) перекиси бензоила и 3 ч. (масс.) диметиланилина при 20 °С [48]. Образующаяся композиция, свойства которой представлены ниже, обладает хорошими физико-механическими показателями и может быть использована для получения строительных конструкций, рекламных панелей и других назначений  [c.221]

    Теплота полимеризации на единицу массы велика по сравнению с теплотами полимеризации других мономеров (табл. 11), и отвод тепла, выделяющегося при реакции, имеет большое значение для регулирования процесса полимеризации этилена. Например, при 100° и 1000 ат теплоемкость этилена с =0,415 [И], и, следовательно, в результате полимеризации при постоянном объеме в адиабатических условиях только 1% этилена выделяется 8 кал г, что приводит к повышению температуры почти на 20°. В отсутствие кислорода полиэтилен термически устойчив до 300°, при более высокой температуре начинается разложение, но в заметных количествах этилен появляется только выше 350°. Свободная энергия полимеризации этилена такова, что равновесие между полимером и мономером при обычных температурах сильно сдвинуто в сторону образования полимера вычисленная предельная температура полимеризации, при которой константа равновесия полимер—мономер равна 1, составляет примерно 400° [12] при атмосферном давлении и растет с повышением давления. Явление предельной температуры, наблюдаемое при высокотемпературной полимеризации метилметакрилата, обычно не имеет места при поли- [c.52]

    Полимеризацией называют реакцию присоединения одинаковых молекул или атомов друг к другу. Молекулярная масса полимера является кратной молекулярной массе составляющих его молекул (мономеров). [c.426]

    Вычислите среднечисловую степень полимеризации стирола в массе и при латексной полимеризации, если известно, что полимеризацию проводят при одной и той же температуре (60 °С) с одинаковой скоростью инициирования, равной 4,41 10 моль л с при концентрации мономера в массе 9 моль л в латексных частицах 7 моль л . При полимеризации в массе = 2,9 Ю л моль с , обрыв протекает путем рекомбинации, кр = 145 л моль с , константа передачи цепи на мономер 0,6-10 . Реакции передачи цепи на другие агенты не происходят. В 1 мл латекса содержится 6-10 полимерно-мономерных частиц. [c.100]

    В общем случае полимеризация объемных мономеров стирола, изобутил-винилового эфира и других - в присутствии полисульфокислот, очевидно, может протекать через инициирование в объеме с диффузионными ограничениями или с поверхности. На это указывают невысокие значения молекулярных масс продуктов или эффективности инициирования процесса. Дополнительное сульфирование, фторирование полимерной матрицы, использование термостойких полимеров (сульфо- [c.57]

    Одним из существенных недостатков способа полимеризации ВХ в массе является сложность отвода тепла реакции на глубоких стадиях Превращения мономера вследствие отсутствия жидкой фазы (когда остаточный мономер растворяется в твердом полимере). В условиях неизотермического процесса частицы ПВХ перегреваются, при этом увеличивается содержание низкомолекулярных фракций и происходит частичное дегидрохлорирование полимера. Он характеризуется более широким молекулярно-массовым распределением, большей разветвленностью молекул и более низкой термостабильностью по Сравнению с суспензионным ПВХ [68]. Его термостабильность можно значительно повысить, вводя небольшие добавки антиоксидантов или других термостабилизаторов [124]. [c.19]


    В промышленности пластических масс перекиси используются в качестве инициаторов полимеризации винильных мономеров как в дисперсных, так и в эмульсионных системах и совсем недавно их начали применять для вулканизации каучука при низкой температуре. Перекиси применяются также при вулканизации различных каучуков, при получении полиэфирных слоистых пластиков, привитых сополимеров и, согласно патентным данным, в совсем другой области — в качестве агентов пенной флотации. [c.443]

    Дальнейшее изучение полимеризации изобутилена и некоторых других мономеров показало, что катализаторами катионной полимеризации могут. являться и другие кислоты, галогениды бора, алюминия, титана и олова, т. е. вещества, представляющие собой сильные акцепторы электронов (электрофильные реагенты). При этом можно в соответствующих условиях получить полимеры с очень высокой молекулярной массой. [c.149]

    Следует подчеркнуть, что описанные стадии полимеризации протекают в массе, накладываясь друг на друга во времени, и условия их протекания различны Так, при повышении температуры ускоряется инициирование, но одновременно ускоряются процессы деструкции, что приводит к повышению полидисперсности полимера Увеличение концентрации активных центров (свободных радикалов) приводит к уменьшению молекулярной массы полимера Зависимость средней степени полимеризации X от концентрации инициатора Сн и мономера См выражается уравнением [c.33]

    Скорость полимеризации и свойства каучука зависят от равномерности распределения натрия в массе бутадиена, величины поверхности его соприкосновения с бутадиеном, чистоты мономера, давления и температуры. Строгая регулировка температуры тем более важна, что после возникновения первичных активных центров процесс полимеризации затем идет с выделением тепла. Повышение температуры сверх оптимальной приводит к получению полимеров с малым молекулярным весом. Поэтому необходимо отводить тепло из реакционной массы. При блочном способе полимеризации молекулярный вес, да и другие свойства получаемого каучука весьма неоднородны. После окончания полимеризации непрореагировавший мономер и другие оставшиеся продукты удаляют из автоклава. Затем в автоклав подают азот и выгружают каучук. [c.591]

    Адсорбционная насыщенность ПВАД, стабилизированных эмульгатором С40, приближается к 100% и не зависит от концентрации С-10 в пределах содержания его 4—10% от массы мономера. Диаметр частиц дисперсии уменьшается с увеличением отношения эмульгатор мономер (рис. 1.8) и не изменяется с начала полимеризации и до глубокой конверсии. Последнее обстоятельство, а также независимость скорости полимеризации ВА от концентрации мономера позволяет предполагать возможность протекания процесса от начала до конца в микроблоках, образующихся из микроэмульсии. ВА в растворе эмульгатора. Зарождение частиц в мономерной фазе при диаметре капель мономера менее 0,7—1,1 мкм отмечалось и при амульсионной полимеризации других мономеров в случае использования смеси ионогенных и неионогенных эмульгаторов [33, с. 72] Наличие гель-эффекта при эмульсионной полимеризации ВА в присутствии неионогенных ПАВ, определяемого по появлению разветвленности ПВА в области конверсии мономера 50—70%, не характерного для эмульсионной полимеризации ВА в присутствии волгоната, также подтверждает особенность механизма полимеризации ВА в растворах неионогенных эмульгаторов [34]. [c.28]

    Качество получаемого каучука определяется в основном стадией полимеризации. В процессе полимеризации необходимо обеспечить постоянство молекулярной массы и высокую бифункциональность полимера. Первый показатель будет зависеть от постоянства отношения концентраций мономера и инициатора f/V/ Поскольку во время процесса полимеризации концентрации мономера и инициатора изменяются с разными скоростями, это отношение будет меняться в течение полимеризации, так как в большинстве случаев инициатор расходуется быстрее, чем мономер. Чем больше инициатора введено в начале процесса, тем меньше сократится значение М/УД при некоторой заданной конверсии мономера, и тем медленнее будет возрастать молекулярная масса полимера в течение процесса. С другой стороны, при малой [c.420]

    Полимеризация винилхлорида в массе протекает в среде жидкого мономера, в котором предварительно растворяется инициатор. В качестве инициатора применяют органические перекиси, азо-бис-изонитрилы и другие соединения, растворимые в мономере. Основным недостатком этого метода является трудность отвода тепла реакции. Вследствие нерастворимости полимера в мономере твердая фаза начинает образовываться уже в самом начале процесса. С увеличением степени превращения винилхлорида постепенно исчезает жидкая фаза, образуются крупные агрегаты полимера, которые затем слипаются в монолитные блоки. При этом на стенках реактора образуется твердый налет, затрудняющий отвод тепла через стенки, что приводит к местным перегревам и получению неоднородного полимера. Вследствие этого в обычном реакторе-автоклаве полимеризацию осу1цествляют при интенсивном перемешивании лишь до невысокой [c.27]

    Вычислите начальную скорость полимеризации стирола в массе и скорость латексной полимеризации на послемицеллярной стадии. Рассчитайте среднюю длину кинетической цепи в том и другом случае. Полимеризация проводится при одной и той же температуре (60 °С), концентрация мономера в массе 9 М, в латексных частицах 5 М, скорость инициирования 5 10 моль л - с /Ср = 145 л - моль -.с , /-.о = 2,9 10 л - моль с . В 1 мл реакционной смеси при латексной полимеризации содержится 1,0-10 полимерномономерных частиц. [c.99]

    Полимеризация. Другая, характерная для алкенов, реакция присоединения — полимеризация. Множенство молекул мономера соединяются вместе, образуя одну большую молекулу полимера. Мономеры и полимеры Молекулярная масса полимера может достигать [c.590]

    Простые виниловые эфиры полимеризуются преимущественно по катионному механизму. Обычно катализаторами являются А1Вгз, ЗпСЦ, РеС1з, ВРз. Полимеризация протекает при комнатной или более низкой (до —80°С) температуре. Радикальной полиме-. ризацией удается получить лишь низкомолекулярные (с молекулярной массой около 1000) жидкие полимеры. В то же время радикальная сополимеризация виниловых эфиров со многими другими мономерами проходит легко. [c.134]

    Проведение суспензионной полимеризации в воде позволяет достаточно эффективно отводить выделяюн],уюся нрн иолимеризации теплоту. В связи с тем, что вода не участвует в реакциях передачи цепи при радикальной полимеризации виниловых мономеров, осуществление полимеризации в воде позволяет, применяя чистые мономер и другие компоненты, получать ПТФЭ с высокой молекулярной массой. [c.32]

    Листовой материал получают полимеризацией в массе метилметакрнлата или его сополимеризацией с другими мономерами под действием инициаторов [c.205]

    Из рис. 4.1 следует, что общие закономерности (в частности, характер зависимостей числа образующихся частиц и скорости полимеризации от 1Молекуля1рной массы и концентрации мыла) аналогичны закономерностям, наблюдаемым лри эмулысионной полимеризации стирола. Однако, как это видно нз рис. 4.2, абсолютное число частиц, образующихся при полимеризации, значительно возрастает при переходе от стирола к бутадиену несмотря на это, суммарная окорость полимеризации бутадиена существенно ниже, чем скорость полимеризации стирола в тех же условиях. Этот факт объясняется, очевидно, не только разными значениями констант скоростей роста полистирольных и полибутадиеновых цепей (соответственно 0,221 и 0,100 м (моль-с) при 60°С [9], но и другими, пока не выявленными причинами. Следует также отметить, что при одинаковых рецептах полимеризации иинетичеокие кривые имеют для стирола приблизительно линейную, а для бутадиена 5-образную форму в области низких конверсий мономеров [1, с. 187]. [c.162]

    Полимеризация в непрерывно действующих реакторах проводится в растворе бензола или другого растворителя, в котором растворяется 15— 20% изопрена и около 2% катализатора А1(мзо-С4Нэ — Т1С14(А1 Т1 = = 1,8—2,0 1) от взятого мономера. Полимеризация проводится при 30° С в течение около 30 мин. при перемешивании. В процессе полимеризации вязкость реакционной массы сильно возрастает до десятков и сотен тысяч сантипуаз в результате превращения мономера в полимер, который остается в растворе, образуя гель. Поэтому для перемешивания реакционных смесей с высокой вязкостью применяются мешалки в виде шнеков или другой конструкции, обеспечивающей перемешивание и продвижение реакционной массы. [c.164]

    Махадеван и Сантхаппа [899] исследовали кинетику полимеризации метилакрилата в массе и в растворе этилацетата при 55—75°, инициатор—перекись бензоила и другие пероксиды. Молекулярный вес рассчитывался по уравнению, [ 1]= 1,28- 10 M i и Рп = 11,2 ([7j]-100)1-22, где Рп — коэффициент полимеризации. Определены также скорость инициирования, константы переноса цепи мономером и катализатором и другие константы. [c.375]

    Прево-Берна [74, 75] и Бенсассон [76] провели полимеризацию акрилонитрила в массе, в водном растворе и в растворе диметилформамида под действием у-излучения при глубине превращения 1—5% и установили, что порядок реакции полимеризации акрилонитрила относительно интенсивности у-облучения в. растворе диметилформамида составляет п = 0,55, а в водной среде п = 0,73—0,85 [76]. Берстейн, Фармер и другие авторы [77] обнаружили, что выпадение полимера из мономера при облучении интенсивностью 10—100 р час наблюдается после экспозиции, соответствующей 20—25 р/час, а при интенсивности 9400 р/час после экспозиции, соответствующей 200 р час. Клименков, Каргин и Китайгородский [78] рассчитали величину удельной контракции полиакрилонитрила, равную 0,204. Вопросам полимеризации акрилонитрила посвящен ряд других работ [79—82]. [c.441]

    Полимеризация мономера из газовой фазы на ориентированной полимерной подложке также создает интересные возможности. В этом случае на подложке постепенно нарастает ориентированная полимерная рубашка . Полимеризация может идтп как на подложке нз того же, так и из другого полимера. Степень орпен-тацип наращиваемого полимера здесь примерно такая же, как и у полимера подложки. Скорость полимеризации и мол. массу образующегося полимера можно регулировать, изменяя условия процесса. [c.260]

    Исследована кинетика полимеризации винилацетата в массе и в растворе этилацетата с азо-бис-изобутиронитрилом под действием УФ-излучения Изучение кинетики полимеризации винилацетата описано также и в других работахПоказано, что отношение р/Ао при 25° С равно 2,1 10-5 — 2,4 10 (йр и ко — константы скорости реакций роста и обрыва цепи). Определены константы передачи цепи через растворитель (С), при полимеризации винилацетата в присутствии азо-бис-изобутиронитрила (С-104) ддя этилацетата-2,9, н-пропилацетата-6,2, изопропил ацетата-3,5, н-бутилацетата-13,2, изобутилацетата-6,1, вгор-бутилацетата-4,4, грег-бутилацетата-1, 5, -гептана-17,0, изооктана-8,0 52. Для винилацетата рассчитаны отношение предэкспоненциальных факторов Лп/Лр = 5,2-10- и разность энергий активации Еа — Е = 3,8 для реакции передачи и роста цепи Определены константы передачи цепи (С) при радикальной полимеризации винилацетата для 100 веществ, в случае замещенных бензола обнаружено некоторое соответствие для величин С 1с величинами а (из уравнения Гамметта) ю54-10бз Предложено определить глубину конвер сии полимеризации винилацетата при помощи измерения диэлектрических потерь винильных мономеров в сантиметровом диапазоне с изменением конверсии степень полимеризации винилацетата проходит через минимум [c.584]


Смотреть страницы где упоминается термин Полимеризация других мономеров в массе: [c.189]    [c.51]    [c.108]    [c.9]    [c.93]    [c.108]    [c.47]    [c.79]    [c.262]    [c.81]   
Смотреть главы в:

Кинетика радикальной полимеризации виниловых соединений -> Полимеризация других мономеров в массе




ПОИСК





Смотрите так же термины и статьи:

Другие мономеры



© 2024 chem21.info Реклама на сайте