Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода полярность

    При хлорировании непредельных соединений, как правило, хлор барботируют через раствор непредельного соединения в соответствующем растворителе, при бромировании и иодировании к раствору непредельного соединения по каплям прибавляют раствор галогена в том же растворителе. В качестве растворителя при галогенировании используют галогеналканы, уксусную кислоту, простые и сложные эфиры и другие органические жидкости, не взаимодействующие с галогеном в условиях реакции присоединения, а также воду. Полярные растворители способствуют гетеролитиче-скому протеканию реакции. Чтобы избежать свободнорадикального течения, реакции проводят в темноте и в присутствии ингибиторов радикальных реакций. [c.121]


    Все многообразие зависимостей поверхностного натяжения от концентрации может быть представлено кривыми трех типов (рис. 43). Для поверхностноактивных веществ (ПАВ) характерны кривые типа 1. ПАВ менее полярны по сравнению с растворителем, обладают меньшим, чем растворитель, поверхностным натяжением. Интенсивность взаимодействия молекул растворителя с молекулами ПАВ меньше, чем молекул растворителя между собой. По отношению к воде, полярному растворителю, поверхностно-активными веществами являются органические соединения, состоящие из углеводородного радикала (гидрофобная или олеофильная часть) и полярной группы (гидрофильная часть) карбоновые кислоты, их соли, спирты, амины. Такое дифильное строение молекулы является характерным признаком ПАВ. Углеводородные цепи, не имеющие постоянного дипольного момента, гидрофобны, взаимодействуют с молекулами воды слабее, чем между собой, и выталкиваются на поверхность. Поэтому органические вещества, не обладающие полярной группой (например, парафины, нафтены), в воде практически нерастворимы. Полярные группы типа —ОН, —СООН, —NH и др. обладают высоким сродством к воде, хорошо гидратируются, и наличие такой группы в молекуле обусловливает растворимость ПАВ. Таким образом, растворимость ПАВ в воде зависит от длины углеводородного радикала (растворимость уменьшается с увеличением длины в гомологическом ряду). Например, карбоновые кислоты i — С4 неограниченно растворяются в воде растворимость кислот С5 — С12 заметно падает с ростом числа С-атомов, а при длине углеводородной цепи более i2 они практически нерастворимы. Увеличение длины углеводородного радикала молекулы ПАВ на одну СНа-группу приводит к увеличению поверхностной активности в 3,2—3,5 раза (это правило называется правилом Дюкло — Траубе). [c.205]

    Физические свойства. Чистая вода представляет собой бесцветную прозрачную жидкость без запаха и вкуса. Она существует в трех агрегатных состояниях твердое — лед, жидкое и газообразное — водяной пар. При О °С твердая и жидкая фазы находятся в состоянии динамического равновесия, поэтому температура плавления льда равна О °С. При 1(Ю °С в равновесии находятся жидкая и газообразная фазы. Температура кипения воды равна 100 °С. При - -4°С она имеет наибольшую плотность, равную 1 г/см . Выше или ниже этой температуры плотность воды меньше 1 г/см . Эта особенность отличает воду от всех других веществ, плотность которых с понижением температуры увеличивается. При переходе воды из жидкого в твердое состояние происходит увеличение объема и уменьшение плотности из 92 объемов жидкой воды образуется 100 объемов льда. Молекула воды полярна и построена по типу треугольника, в вершине которого находится электроотрицательный атом кислорода, а в углах оснований — водород. Валентный угол равен 104,5° (рис. 25). [c.162]


    В то же время гетеролитическое расщепление галогенов как неполярных молекулярных веществ в воде (полярном растворителе) или в растворах, содержащих ОН -ионы, также приводит к образованию кислородных кислот галогенов или их анионов. Сначала происходит сольватация растворенных галогенов. В результате взаимодействия с диполями воды неполярная < вязь в молекулах галогенов подвергается индуцированной поляризации. а затем протекает быстро идущее окислительно-вос-становительное диспропорционирование. При этом рассматриваемый формально катион галогена оказывает поляризующее [c.505]

    Молекулы Н О и СО2 каждая содержит по две полярных связи (Н—О—Н и соответственно 0=С=0). Почему молекула СО2 неполярна, а молекула воды полярна  [c.56]

    Важная, роль в процессе разрушения нефтяной эмульсии принадлежит дгэмульгаторам, в качестве которых используются поверхностно-ак-тивные вещества (ПАВ). ПАВ обладают способностью изменять фазовые взаимодействия на различных поверхностях раздела. Такая активность обусловлена химическим строением ПАВ, одаа часть молекулы которого имеет сродство к углеводородам (гидрофобная), а другая - к воде (гидрофильная). На поверхности раздела нефть - вода полярная часть молекулы ПАВ, обладающая гидрофильными свойствами, погружена в воду, а неполярная гидрофобная - в нефть. В зависимости от величины и расположения этих частей изменяются и свойства ПАВ как деэмульгаторов,  [c.128]

    Дипольный момент молекул есть векторная сумма диполь-ных моментов связей. Если геометрия молекулы такова, что дипольные моменты связей компенсируют друг друга, то дипольный момент равен нулю и молекула неполярна даже при наличии в ней поляризованных связей (молекула 05). Молекула воды полярна (уголковая форма). [c.106]

    Электролитическая- диссоциация воды. Полярные молекулы воды могут диссоциировать, проявляя при этом свою амфотер-ность  [c.203]

    Известно, что хорошим растворителем многих веществ является вода. Это объясняется тем, что молекулы воды полярны. Такая полярная частица — диполь, электростатически взаимодействуя с полярными частицами твердого тела, способствует отрыву последних от поверхности кристалла. [c.143]

    Таким образом, оказалось возможным по данным о чистых компонентах и бинарных смесях получить достаточно точную информацию о свойствах разнообразных многокомпонентных систем, в том числе содержащих воду, полярные органические растворители (кетоны, спирты, нитрилы и т. д.), а также парафиновые, нафтеновые и ароматические углеводороды. [c.10]

    Сорбционная область в данном случае представляет собой фрагмент поверхностного слоя белка, напоминающий мицеллу ПАВ (где гидрофобные цепи экранированы от воды полярными группами, см. 6 гл. III). [c.145]

    Теоретическое пояснение. Для дисперсных тонкоизмельченных систем очень сложно измерить величину краевого угла смачивания, поэтому для характеристики поверхности порошков вычисляют величину — коэффициент гидрофильности, равный отношению теплоты смачивания порошка водой (полярной жидкостью) к теплоте смачивания углеводородом (неполярной жидкостью). Для процесса, изображенного на рис. 19.1, можно записать  [c.177]

    При растворении полярного яичного альбумина в воде (полярный растворитель) процесс вначале идет только вследствие уменьшения энтальпии. Энтропия в начальной стадии растворения имеет даже отрицательные значения из-за сильной гидратации полимера. (Молекулы воды в гидратной оболочке переходят в более упорядоченное состояние. Кроме того, не исключено уменьшение гибкости молекул полимера при гидратации его молекул.) Но, конечно, для того, чтобы полимер мог растворяться, абсолютное значение ДЯ должно быть больше ГД5. Однако по мере гидратации гидратированные молекулы полимера растворяются в избытке воды со все меньшим выделением тепла. Растворение в этой конечной стадии идет уже главным образом за счет возможности распределения молекул по всему объему системы, т. е. уже за счет энтропийного фактора. [c.442]

    Контактная коррозия наблюдается, например, в теплофикационных установках, когда медные нагревательные змеевики соединены с железными кипятильниками или трубами. Интенсивная коррозия железа протекает около мест соединения. Однако соотношение между потенциалами контактирующих металлов зависит не только от природы металлов, но также от природы растворенных в воде веществ, от температуры и от других условий и не всегда соответствует взаимному положению металлов в ряду напряжений. Так, в случае контакта железо—цинк последний интенсивно корродирует при комнатной температуре, но в горячей воде полярность металлов изменяется и растворяться начинает железо. [c.691]


    Актуально развитие работ по изучению химии комплексных соединений в неводных средах. Неводные (в основном органические) растворители отличаются от воды полярностью и сольватирующей способностью. Поэтому, применяя их, как установлено в последние годы, можно получить устойчивые комплексы, которые в водных растворах легко разрушаются. [c.242]

    Целлюлоза, каждое элементарное звено которой содержит три гидроксильные группы, в воде нерастворима, но обладает большой водопоглощаемостью и гигроскопичностью. Если отвлечься от физической структуры целлюлозных материалов, отличающихся развитой поверхностью, их чувствительность к влаге объясняется притяжением диполей воды полярными гидроксильными группами. При блокировании гидроксилов, т. е. при связывании их другими группами, как и в случае поливинилового спирта, резко снижается гидрофильность материала. Такое связывание широко применяют, получая простые и сложные эфиры целлюлозы  [c.72]

    Этот процесс можно представить следующим образом. Молекула воды полярна, а кристаллы соли, как известно, состоят из ионов. Молекулы воды будут притягиваться к ионам соли. Если сила этого взаимодействия достаточна, чтобы отделить ион от кристалла, то ион переходит в раствор. Так переходит в раствор ион за ионом. [c.129]

    Опыт 1. Растворение в воде полярных и неполярных молекул. [c.100]

    При воздействии диполей воды полярная связь в НО [c.104]

    При воздействии диполей воды полярная связь в НС1 еще больше поляризуется и в конце концов происходит ионизация и диссоциация молекулы НС1  [c.117]

    Поэтому неполярные гидрофобные твердые адсорбенты, такие, как уголь и сажа, должны хорошо адсорбировать растворенные вещества из водных растворов вода (полярный растворитель) плохо смачивает эти адсорбенты. [c.67]

    Однако вода оказывает сильное ионизирующее действие на растворенные в ней электролиты. Под действием диполей воды полярные ковалентные связи в молекулах растворенных веществ превращаются в ионные, в результате чего растворы многих веществ в воде проявляют кислотные свойства  [c.681]

    Проверим математическую модель (5.5) на адекватность применительно к ДНП воды - полярной жидкости, наиболее изученной в химии и теплотехнике, для которой в литературе имеются точные значения констант для фазовых превращений и давлений насыщенных паров с шагом 1 С Тп., = 273,15 К, [c.76]

    Третий фактор, который мол<ет обусловливать лишь устойчивость эмульсий второго рода, стабилизованных мылами с поливалентным катионом, сводится к адсорбции на поверхности капелек воды полярных концов достаточно длинных и гибких углеводородных участков молекул мыла, растворенных во внешней неполярной фазе эмульсии и способных совершать микроброуновское движе- [c.374]

    Большая часть полярных атомных групп на поверхности белков и нуклеиновых кислот расположена близко друг к другу, так что молекула воды в гидратной оболочке может связываться с поверхностью двумя водородными связями [138— 140]. Поэтому хорошей моделью для изучения свойств воды полярной поверхности биополимеров могут служить полифунк-циональные низкомолекулярные соединения со сближенными полярными группами, такие, например, как сахара, аминокислоты и др. [c.54]

    Пользуясь этим методом, можно определить паро-жидкостноо равновесие смесей различных классов, включая воду, полярнь[с [c.54]

    Если взять вещество с дифильными молекулами, например октиловый спирт, то для него работа когезии равна 55 эрг1см , т. е. мало отличается от бензола. Поэтому октиловый спирт, подобно бензолу, не растворяется в воде. Однако октиловый спирт, растекаясь по поверхности воды на границе раздела, ориентируется в сторону воды полярными гидроксильными группами. Поэтому, чтобы отделить молекулы октилового спирта от воды, необходимо затратить значительно большую энергию (92 эрг1см ), чем для отделения бензола. Различие можно объяснить сильным взаимодействием с водой гидроксильных групп спирта, Таким образом, величина когезий и величина адгезии дают возможность определить асимметрию силового поля молекул. Она определяется разностью между энергией адгезии по отношению к воде и энергией когезии данного вещества, определяемой неполярными группами. [c.33]

    Таким образом, молекулы типичных ПАВ, сочетая в себе одновременно полярные и неполярные свойства, являются д и ф и л ь и ы м и, т. е. проявляют сродство к воде (гид-рофильность) и к маслам (олеофильность, или липофиль-ность). Другими словами, в молекулах типичных ПАВ сочетаются две противоположные тенденции. Нерастворимый в воде углеводородный радикал стремится выйти в близкую по полярности фазу, выталкивается из воды. Этому способствует интенсивное взаимное притяжение полярных молекул воды друг к другу (силы когезии воды). Эти силы значительно больше, чем силы взаимодействия между углеводородными радикалами и молекулами воды. Полярная же группа определяет обратную тенденцию — растворимость ПАВ в воде. [c.6]

    Сложным является влияние полярных органических веществ на солюбилизацию углеводородов. Низкомолекулярные добавки (например, метанол, ацетон, диоксан) снижают солюбилизирующую способность коллоидных ПАВ. Это обусловлено тем, что в смешанном водно-органическом растворителе вследствие понижения диэлектрической проницаемости повышается энергия электростатического отталкивания и уменьшаются равновесный размер и олеофильность мицелл. Напротив, плохо растворимые в воде полярные добавки например, спирты с п>4, фенолы), образующие смешан- [c.84]

    Ш. Укажите растворитель, в котором туйан растворяется легче всего. а. Вода - полярный неорганический растворитель б. Спирт - полярный органический растворитель в. Бензин (смесь алканов) [c.59]

    Неионогенные ПАВ (НПАВ). Это вещества, молекулы которых не диссоциируют на ионы. Молекулы НПАВ дифильны, поскольку образуются, например, при взаимодействии высщих спиртов, кислот или фенолов с несколькими молекулами оксида этилена. В результате получаются соединения типа Н(ОСН2СН2)тОН. Чем длиннее оксиэтиленовая цепочка, тем более выражены гидрофильные свойства. Растворимость НПАВ зависит от сродства к воде полярных групп оксиэтиленовых или эфирн[51х цепочек — (ОСН2СН2)  [c.441]

    ККМ коллоидных растворах представляют собой сферические агрегаты, в которых молекулы слиплись своими углеводородными концами и обращены наружу (в воду) полярными группами. При даль-нейщем увеличении концентрации строение мицелл изменяется, они приобретают эллипсоидальную, а затем пластинчатую форму. Образование мицелл термодинамически выгодно, так как при этом происходит снижение свободной энергии системы, связанное с переходом углеводородных групп из полярной среды (воды) во внутреннюю углеводородную (неполярную) часть мицеллы. [c.119]

    Причины и ме.ханизм диссоциации электролитов объясняются химической теорией раствора Д. И. Менделе1 ва и природой химической связи. Как известно, электроти-тами являются вещества с ионной или ковалентной сильно полярной связями. Растворители, в которых происхо.хит диссоциация, состоит из полярных молекул. Например, вода — полярный растворитель. Диссоциация электропи-тов с ионной и полярной связями протекает различно. Рассмотрим механизм диссоциации электролитов в водных растворах. [c.180]

    Молекула воды состоит из двух атомов водорода и одного атома кислорода. Ее химическая формула Н2О. Молекулярная масса 28,016. По физическим свойствам вода значительно отличается от других веществ. Например, практически все вещества при охлаждений сужаются, а при нагревании расширяются. Вода же расширяется при замораживании и расширяется почти на 10%. Ядра атомов водорода и кислорода расположены в углах равнобедренного треугольника. Центры тяжести положительных и отрицательных зарядов не совпадают. Молекула воды полярна, наличие двух разноименных полюсов создает силовое поле в ее молекуле. Благодаря взаимодействию этих полей молекулы воды способны агрегироваться и образовывать дигидроли (Н20)г и тригидроли (Н20)з. [c.78]


Смотреть страницы где упоминается термин Вода полярность: [c.207]    [c.227]    [c.211]    [c.200]    [c.7]    [c.85]    [c.300]    [c.345]    [c.181]    [c.147]    [c.12]   
Курс общей химии (1964) -- [ c.64 , c.65 , c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Полярность воды



© 2024 chem21.info Реклама на сайте