Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия как мера гидратации

    Различие энергии активации АЕ для некоторых ионов, рассматриваемое как мера гидратации [c.290]

    Из табл. 17 ясно видно, что энергия (теплота) гидратации уменьшается по мере увеличения радиуса г иона при одном и том же числе заряда ионов г. [c.167]

    Обмен катионов в цеолите на катионы металлов. Исследована реакция обмена ионов Na в цеолите типа Y. Полученные при этом результаты рассмотрены с учетом влияния отрицательно заряженной алюмокремниевой анионной решетки. Были использованы образцы, в которых ионы Na обменивались только в больших полостях цеолита на ионы других металлов I группы степень обмена составляла 50%. Ряд селективности, полученный на цеолите типа Y, был следующим [92] s > Rb > К > Na > Li. Как можно видеть, селективность отрицательно заряженной кристаллической решетки для обмена ионов щелочных металлов уменьшается по мере возрастания энергии их гидратации. На основании экспериментальных данных автор 192] делает вывод о том, что ионы в больших полостях цеолита типа Y находятся в гидратированном, подвижном состоянии. [c.35]


    Такие различия определяются, очевидно, двумя основными факторами собственными размерами ионов и энергией их гидратации. Чтобы проникнуть в каналы решетки цеолита, ионы должны полностью или частично дегидратироваться. Поэтому из-за большой энергии гидратации Ха , будучи вытеснен из решетки менее гидратированными ионами ЫН4 или Ag", оказывается не в состоянии полностью вернуть утраченные позиции, а степень внедрения других катионов возрастает по мере увеличения их размеров и уменьшения энергии гидратации. Однако, как показывают данные для Сз , в этом случае решающее влияние имеет уже собственный размер иона (г = 1,65 А), что и приводит к резкому ограничению внедрения его в цеолит. [c.90]

    Используя данные по энергии ионизации, сродства к электрону, ионные радиусы и энергию гидратации, Клопман рассчитал для ряда катионов и анионов энергии внешних орбиталей распределение этих ионов по мере убывания энергии поразительно хорошо совпадает с ходом изменения степени жесткости (мягкости) ионов в водной среде (табл. В. 10). Приведенные в таблице данные следует сравнивать отдельно в ряду катионов и анионов. Для катионов жесткие кислоты имеют положительное значение энергии мягкие кислоты — отрицательное. Это распределение в основном согласуется с активностью соответствующих соединений в реакциях. Единственным исключением является протон, который представляет собой более жесткую кислоту, чем это следует из данных табл. В.Ю. В то же время теория верно, предсказывает, что Т1 + — более мягкий ион, чем Т1+. Причиной этого является П52-конфигурация электронов Т1+ (наличие инертной пары электронов). В последовательности анионов энергия Е имеет только отрицательное значение (около —10 эВ). Область энергии около 10 эВ является границей между жесткими и мягкими соединениями. [c.401]

    Из рис. 18 следует, что поверхностная активность анионов галоидов растет в ряду F < l
частично связано со снижением энергии гидратации ионов по мере увеличения их радиуса. Менее гидратированные ионы получают возможность ближе подойти к поверхности, вследствие чего создаются условия для возникновения сил специфического взаимодействия анионов и металла. При достаточно отрицательных потенциалах в результате электростатического отталкивания происходит десорбция анионов и а, -кривые в растворах, содержащих одинаковую концентрацию общего катиона, совпадают (см. рис. 18). [c.42]


    С1"<Вг < 1 . Эту закономерность можно объяснить снижением энергии гидратации ионов по мере увеличения их собственного радиуса, в результате чего менее гидратированные ионы получают возможность ближе подойти к поверхности электрода, а это ведет к возникновению между анионом и металлом специфического притягательного взаимодействия. При достаточно отрицательных потенциалах анионы десорбируются и электрокапиллярные кривые в растворах, отличающихся только природой аниона, совпадают (рис. УП.9). [c.176]

    Рассмотрим теперь, как влияет сольватация или гидратация ионов на изменение их энергии в связи с изменением концентрации. В качестве меры изменения энергии ионов примем изменение логарифмов концентрационных коэффициентов активности у.  [c.204]

    В общем энергия гидратации ионов очень высокая. Именно высокой энергией гидратации ионов и объясняется способность ионных кристаллов растворяться в воде. Ионы поверхностного слоя такого кристалла по мере их гидратации получают возможность переходить в раствор, Обычно соли, состоящие из хорошо гидратируемых ионов, обладают сравнительно высокой растворимостью. Однако в целом растворимость зависит от многих факторов и ни один из них не может служить показателем большей или меньшей растворимости соли. [c.41]

    Ионный характер связей в гидроксидах и солях и способность ионов к гидратации обусловливают высокую степень диссоциации этих соединений в растворах и наличие ионов в твердых фазах. По мере перехода от лития к цезию (франций мало изучен) с ростом радиуса атома наблюдается увеличение числа молекул воды, гидратирующих ион в растворе, понижение энергии гидратации (как следствие убыли отношения заряд/радиус), понижение энергии образования кристаллических решеток солей, а также температур плавления металлов. Понижение ионизационного потенциала соответствует и росту химической активности по отношению к реакциям окисления в ряду литий — цезий. Цезий и рубидий воспламеняются на воздухе, тогда как литий на воздухе сравнительно устойчив. [c.151]

    Характерная особенность кристаллизационных дисперсных структур — развитие в процессе их формирования внутренних напряжений, которые являются результатом давления, возникающего при направленном росте кристаллов, связанных друг с другом в жесткую пространственную сетку. По данным С. И. Конторович, Л. М. Рыбаковой с сотр., значения напряжений, рассчитанные по уширению рентгеновских линий, могут составлять 10 Н/м и более. Если напряжения, развивающиеся в ходе формирования структуры, достигают ее прочности, то кристаллизация в процессе гидратации исходного вяжущего вещесгва приводит к разрушению структуры по отдельным наиболее слабым участкам. Такое разрушающее действие внутренних напряжений может обнаруживаться в снижении прочности структуры по мере протекания гидратации. Если внутренние напряжения ниже прочности структуры, то явного разрушений, сопровождающегося ] релаксацией, не происходит, они сохраняются в материале в виде упругой деформации кристаллов и связанной с ней избыточной энергией [15]. [c.384]

    Система жидкость — жидкость. Экстракционное выделение рубидия и цезия из их смесей с другими щелочными металлами в системах жидкость — жидкость имеет определенные особенности, объединяющие щелочные металлы в обособленную и до сих пор сравнительно мало исследованную группу. Щелочные металлы обладают большой способностью к образованию хорошо диссоциирующих в водных растворах ионных соединений. Для того чтобы перевести из водного раствора в органический растворитель гидратированный ион щелочного металла, необходимо затратить определенную энергию, равную, по крайней мере, сумме энергий гидратации иона, ориентации и поляризации растворителя. Компенсация этих видов энергии энергией комплексообразо-вания и сольватации иона может привести к тому, что образо- [c.348]

    В цеолите типа X молекулы воды значительно легче диффундируют в структуре и могут приближаться к катионам обоих типов [31]. Как показано на рис. 5.29, по мере того как степень гидратации увеличивается, коэффициент самодиффузии ионов Na + в NaX постепенно возрастает от 1 10" до 1 -IO см - i. Энергия активации электропроводности АН при этом монотонно падает от 12 ккал/моль до постоянной величины, равной 6 ккал/моль, когда содержание воды в цеолите составит 100 молекул в расчете на элементарную ячейку или 12 молекул — на большую полость (рис. 5.30). Сравнение цеолитов с растворами солей показывает, что гидратированные кристаллы цеолита ведут себя как раствор твердого электролита. В полностью гидратированном цеолите NaX концентрация ионов натрия равна приблизительно 18 моль/л. [c.412]

    Коагуляция является процессом обратимым, который, в зависимости от условий, может протекать не до конца, а с установлением динамического равновесия. Процесс, обратный коагуляции, т. е. переход коагулята в золь, называется пептизацией или дезагрегацией. При пептизации частицы скоагулировавшего осадка в результате адсорбции тех или иных ионов приобретают одноименный заряд, взаимно отталкиваясь, переходят в раствор, образуя золь. В результате адсорбции происходит повышение -потенциала частиц и увеличение степени их сольватации (гидратации). Чем меньше времени прошло с момента коагуляции, тем более вероятна пептизация осадка. По мере постепенного агрегирования частиц уменьшаются и дисперсность, и поверхностная энергия, что делает процесс пептизации необратимым. [c.159]


    На основании изложенного ранее, следует предположить, что частота обмена (коэффициент диффузии) определяе / я потенциальным барьером, разделяющим молекулы вод 4 в гидратной оболочке от молекул воды, входящих в агрегаты молекул, не связанные с ионом. Обмен зависит не от полной энергии взаимодействия, а от изменения энергии на очень малых расстояниях вблизи иона. В связи с этим можно ожидать любой характер влияния ионов на трансляционные движения молекул воды. Самойлов считает в связи с этим, что представления о связывании воды в гидратную оболочку не являются общими. Общий подход следует основывать на рассмотрении влияния ионов на трансляционное движение ближайших к иону молекул. Если обмен ослаблен, то гидратация иона значительна. По мере того, как частота обмена возрастает, гидратация ослабляется. [c.291]

    Можно предположить, что энергия активации яерескока гидратированного иона в соседнее равновесное положение в разбавленных растворах приблизительно равна энергии активации перескока ячейки в чистой воде, т. е. Ег Е, так как в разбавленных растворах молекулы воды, окружающие ион, располагаются приблизительно так же, как в чистой воде. Следовательно, молекулы воды в гидратной оболочке экранируют значительную часть влияющего на соседние молекулы воды электрического заряда иона. Однако перескок голого иона в соседнее равновесное положение требует энергии активации, отличной от энергии активации перескока отдельной молекулы в чистой воде. Разница энергий Е —Е=АЕ обусловлена изменением энергетического барьера между двумя соседними равновесными положениями иона, и в то же время она может служить мерой гидратации ионов (для оценки числа непосредственно соседствующих молекул воды). Таким образом, коэффициент самодиффузии ионов равен [c.290]

    Предположение, что А//=0 для реакцир Hg—>2П + 2е весьма условно. Однако энергия, затрачиваемая на разрыв связи в молекуле водорода, несомненно в значительной мере компенсируется выделением энергии при гидратации иона водорода Н н растворе с образованием весьма прочного иона гидроксония НдО" , так как прп малых размерах иона водорода возникают сильные взаимодействия между ним и диполем воды. [c.75]

    Ири равных концентрациях других солей выхода уменьшаются по мере уменьшения радиуса г их катионов и величины отношения заряда иона г к радиусу, т. е. но мере уменьшения потенциала V — г/г. Особенно показательно, что для катионов с особенно высоким потенциалом, начиная с Mg , персульфаты получались в очень малых количествах или даже совсем не получались. Эту особенность катионов можио связать также с энергией их гидратации, которая является наименьшей у самого бол -шего из иопов—иона К и наибольшей—у иона из сульфатов, катионы которых отличаются наибольшей энергией гидратации, т. е. Mg2, 2и2 и АР, персульфаты совсем ие получались, и анодный процесс заключался лишь в выделении кислорода. [c.338]

    При газофазной гидратации ацетилена невозможно удалять ацетальдегид ио мере его образования, вследствие чего побочная реакция кротоновой конденсации становится особенно опасной. Она имеет более высокую энергию активации ио сравнению с гидратацией, поэтому один из способов повышения селективности состоит в устранении перегрева и организации оптимального теплового режима процесса. Другой способ — иримеиение большого из- [c.196]

    Присоединение молекул воды к оксиэтилированным веществам всегда протекает экзотермически, энергия водородной связи составляет около 7 ккал1моль. По максимальному повышению температуры при растворении в воде определенных количеств оксиэтилированных веществ Карабинас и Метцигер определяли степень их гидратации и получили результаты, хорошо совпадающие с теоретически вычисленными величинами. Подогрев разбавленных растворов оксиэтилированных веществ до определенной температуры приводит к дегидратации этих веществ вследствие того, что энергия водородной связи недостаточно велика. Дегидратированное при нагревании вещество теряет способность растворяться в воде п раствор становится мутным, а при охлаждении вещество опять растворяется в воде. Для каждого оксиэтилированного вещества имеется своя температура помутнения разбавленного водного раствора, являющаяся мерой соотношения величин гидрофильной и гидрофобной частей молекулы оксиэтилированных веществ. [c.138]

    При парофазной гидратации удаление ацетальдегида по мере его образования невозможно, а накопление его в реакционной зоне увеличивает вероятность побочных реакций, особенно кротоновой конденсации (в). Для подавления побочных реакций необходимо устранение местных перегревов, при которых развивается реакция (в), имеющая более высокую энергию активации, применение избытка водяного пара, способствующего выводу ацетальдегида из сферы реакции, и проведение процесса при невысокой степени конверсии ацетилена. [c.302]

    При сравнении же металлов в ряду напряжений за меру химической активности принимается работа превращения металла, находящегося в твердом состоянии, в гидратированные ионы в водном растворе. Эту работу можно представить как сумму трех слагаемых энергии атомизации — превращения кристалла металла в изолированные атомы, энергии ионизации свободных атомов металла и энергии гидратации образующихся ионов. Энергия атомизации характеризует прочность кристаллической решетки данного металла. Энергия ионизации атомов — отрыва от них валентных электронов — непосредственно определяется положением металла в периодической системе. Энергия, выделяющаяся при гидратации, зависит от электронной структуры иона, его заряда и радиуса. Ионы лития и калия, имеющие одинаковый заряд, но различные радиусы, будут создавать около себя неодинаковые электрические поля, Поле, возникающее вблизи маленьких ионов лития, будет более си.пьным, чем поле около больших ионов калия. Отсюда ясно, что ионы лития будут гидратироваться с выделением большей энергии, чем ионы калия. [c.329]

    Изменение формы электрокапиллярных кривых при переходе от поверхностно-неактивного электролита (NaF) к растворам, содержащим специфически адсорбирующиеся анионы ( h, Вг , 1 ), показано на рис. 55. Специфическая адсорбция анионов на незаряженной поверхности ртутного электрода проявляется в снижении электрокапиллярного максимума, а возникновение скачка потенциала между слоем специфически адсорбированных анионов и притянутыми к ним катионами — в сдвиге потенциала нулевого заряда в отрицательную сторону по сравнению с =о в растворе NaF. Как видно из рис. 55, специфическая адсорбция галоидных ионов растет в ряду Е <С]--<Вг -<1 . Эту закономерность можно объяснить снижением энергии гидратации ионов по мере увеличения их собственного радиуса, в результате чего менее гидратированные ионы получают возможность ближе подойти к поверхности электрода, а это ведет к возникновению между анионом и металлом специфического притягательного взаимодействия. При достаточно отрицательных потенциалах анионы десорбируются и элект-рокапиллярные кривые в растворах, отличающихся только природой аниона, совпадают (рис. 55). [c.153]

    Со специфической способностью СаСЬ поглощать большое количество воды контрастирует безразличие к Н2О хлоридов Sr (И) и Ва (П). Они растворимы в воде, но кристаллизуются из водных растворов в форме безводных солей и, естественно, не гидратируются при их хранении на влажном воздухе. Причин различий в поведении по отношению к воде СаСЬ, с одной стороны, и Sr b, ВаСЬ — с другой, по крайней мере две. Это меньшая энергия гидратации и Ва + из-за их большего, чем у Са2+, ионного радиуса и, затем, лучшее соответствие размеров катионов тяжелых ЩЗЭ и аниона I образованию прочной [c.37]

    По-видимому, первичная гидратация ионов щелочных металлов и галоидов осуществляется 4 молекулами воды, что дает для средней энергии одной связи приблизительно 10—15 ккал/моль. По мере увеличения заряда иона (и уменьшения его радиуса) эта энергия повышается и для АиОНг) " составляет уже около 100 ккал/моль, что по порядку величины соответствует прочной химической связи. Вместе с тем установлено, что непрерывный обмен в гидратной оболочке этого иона одних молекул воды на другие осуществляется весьма интенсивно (наполовину уже за десятые доли секунды). [c.211]

    С. И. Конторович, Л. М. Рыбаковой и сотр., непосредственно наблюдавших эти напряжения по уширепию рентгеновских линий, они могут составлять 10 Н/м и более. Если напряжения, развивающиеся в ходе формирования структуры, достигают ее прочности, то кристаллизация в процессе гидратации исходного вяжущего вещества приводит к разрушению структуры по отдельным наиболее слабым участкам. Такое-разрушающее действие внутренних напряжений может обнаруживаться в снижении прочности структуры по мере протекания гидратации. Если внутренние напряжения ниже прочности структуры, то явного разру шения, сопровождающегося релаксацией напряжений, не происходит напряжения сохраняются в материале в виде упругой деформаци кристалликов и связанной с ней избыточной энергии. [c.322]

    Поскольку реакции восстановления углеродом и водородом протекают в гетерогенной фазе, трудно непосредственно выразить в виде зависимости их нормальные электродные потенциалы. Однако для элементов, которые можно восстановить угле-родо.м, фактическим граничным условием является о>—0,5 В (исключение составляет 2п с о = —0,763 В в этом случае по мере образования продукта восстановления — металлического цинка — его удаляют из реакционной системы в виде паров). Это означает, что суммарное изменение энергии Гиббса для процесса (3.4) связано почти линейной зависимостью с изменением энергии восстановления твердых оксидов углеродом. Оксиды металлов являются ионными кристаллами, и процесс выделения из иих металлов можно рассматривать в соответствии с общей реакцией (3.4). Уравнение (3.6) отвечает диссоциации ионного кристалла — оксида МаОп- Если гидратацию рассматривать как образование ионной координационной связи, то можно считать, что изменение АС°, приведенное для (3.4), в какой-то мере может отражать АС° для случая диссоциации ионных связей между М—О. [c.142]

    Типичным жестким взаимодействием является гидратация. Первый потенциал ионизации и энергия сродства к первому электрону служат мерой силы сродства к электрону. Если считать, что иягкое взаимодействие происходит с образованием ковалентной связи, то оно характеризуется сродством к электрону, [c.305]

    Гели, из которых удаленная жидкая фаза способна ими вновь поглощаться, называются ксерогелями. Например, продукты гидратации цемента, формирующиеся в затвердевшем материале, обладают свойствами таерогелий, которые в результате неоднократного увлажнения и сушки снижают физико-механические свойства, стабилизирующиеся затем через несколько циклов. На свойства затвердевшего цемента при его увлажнении существенное влияние оказывают два фактора поверхностная энергия коллоидных частиц и расклинивающее давление воды. При относительной влажности ниже 50% основное влияние на свойства цементного камня оказывает поверхностная энергия частичек геля, изменяющаяся вследствие сорбции воды. По мере повышения относительной влажности свыше 50% частички геля отделяются друг от друга тонкой пленкой воды под во.чдействием расклинивающего давления воды. Это приводит к тому, что при высокой относительной влажности цементный ксерогель обладает меньшей механической прочностью, в сухом состоянии. [c.167]

    Растворимость НПАВ в воде обусловлена гидратацией окси-этйленовой цепи, так как между молекулами воды и эфирным кислородом оксиэтиленовой цепи возникает водородная связь. Чем больше число оксиэтиленовых групп, тем выше гидратация молекул НПАВ и тем больше их растворимость в воде. В значительной степени на растворимость НПАВ в воде влияет температура. Так как энергия водородной связи сравнительно мала, то при нагревании происходит дегидратация молекул НПАВ и неионогенное вещество теряет способность растворяться в воде, при этом раствор НПАВ мутнеет. Для каждого неионогенного эмульгатора характерна определенная температура (точка) помутнения, которую можно рассматривать как меру растворимости НПАВ в воде. Добавление к раствору НПАВ большинства электролитов приводит к значительному понижению растворимости и температуры помутнения, поскольку под влиянием электролита разрушаются водородные связи между оксиэтиленовой цепью и молекулами воды. [c.113]


Смотреть страницы где упоминается термин Энергия как мера гидратации: [c.129]    [c.25]    [c.340]    [c.292]    [c.39]    [c.347]    [c.380]    [c.146]    [c.314]    [c.173]    [c.137]    [c.108]    [c.117]    [c.103]    [c.229]    [c.419]   
Явления переноса в водных растворах (1976) -- [ c.290 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия гидратации



© 2025 chem21.info Реклама на сайте